

ISSN: 1980-900X (online)

PROVENIÊNCIA DAS ROCHAS METASSEDIMENTARES DO GRUPO ARAXÁ NA PORÇÃO CENTRAL DA FAIXA BRASÍLIA

PROVENANCE OF METASEDIMENTARY ROCKS OF THE ARAXÁ GROUP IN THE CENTRAL BRASÍLIA BELT

Guillermo Rafael Beltran NAVARRO¹, Antenor ZANARDO¹, Cibele Carolina MONTIBELLER², Thaís Güitzlaf LEME², Fabiano Tomazini da CONCEIÇÃO³, Claudio de Morisson VALERIANO⁴

¹Instituto de Geociências e Ciências Exatas, Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista, Campus de Rio Claro. E-mails: guillermo.navarro@unesp.br; antenor.zanardo@unesp.br

²Pós-Graduação em Geociências e Meio Ambiente, Instituto de Geociências e Ciências Exatas, Departamento de Petrologia e Metalogenia, Universidade Estadual Paulista, Campus de Rio Claro. E-mail: cibele.cm@outlook.com, thais.guitzlaf@hotmail.com ³Instituto de Geociências e Ciências Exatas, Departamento de Planejamento Territorial e Geoprocessamento, Universidade Estadual Paulista, Campus de Rio Claro. E-mail: fabiano.tomazini@unesp.br

⁴Faculdade de Geologia, Departamento de Geologia Regional e Geotectônica, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro. E-mail: valeriano.claudio@gmail.com

Introdução Características do Grupo Araxá na região de estudo Métodos analíticos Resultados e Discussões Conclusão Agradecimentos Referências

RESUMO - O Grupo Araxá na região de Morrinhos – Marcelândia é constituído por rochas pelíticas e psamo-pelíticas metamorfisadas em fácies anfibolito, no campo de estabilidade da cianita/estaurolita. A composição química e as razões La/Lu, La/Sc, Th/Sc, La/Co, Th/Co e Cr/Th destas rochas sugerem que a principal fonte destes sedimentos são rochas ígneas félsicas formadas em arcos magmáticos. As idades $T_{DM}Nd$ (1,21 e 1,76 Ga) e as idades U/Pb (< 1,0 Ga e > 1,0 Ga em cristais de zircão detrítico) sugerem contribuição de uma fonte neoproterozoica (predominante) e uma contribuição de outra fonte mais antiga paleo-mesoproterozoica. A congruência dos dados geocronológicos com as assinaturas geoquímicas desta unidade permite afirmar que grande parte do Grupo Araxá na região tem como fonte rochas formadas em arcos magmáticos neoproterozoicos, e sugerem que estes foram depositados em bacias tipo *fore arc*. **Palavras chave:** Idades modelo $T_{DM}Nd$, Geocronologia U-Pb em cristais de zircão detríticos, Geoquímica, Faixa Brasília, Província Tocantins.

ABSTRACT - The Araxá Group in the region of Morrinhos – Marcelândia is constituted of pelitic to psammo-pelitic rocks metamorphosed in amphibolite facies, kyanite/ staurolite stability field. Chemical composition and La/Lu, La/Sc, Th/Sc, La/Co, Th/Co and Cr/Th rates of these rocks suggest that the main source of these sediments were felsic rocks from magmatic arcs. $T_{DM}Nd$ model ages (1.21 and 1.76 Ga) and U/Pb ages (< 1.0 Ga and > 1.0 Ga in detrital zircon) suggest contribution of a neoproterozoic (predominant) source and contributions of an older paleo-mesoproterozoic source. The congruence of these geochronological data with geochemical signatures of this geological unity allow to state that a significant part of the Araxá Group in this region had rocks from neoproterozoic magmatic arcs as source, implying that these were deposited in fore arc basins.

Keywords: T_{DM}Nd model ages, U-Pb detrital zircon geochronology, Geochemistry, Brasília Belt, Tocantins Province.

INTRODUÇÃO

O Grupo Araxá (Barbosa, 1955) corresponde a uma unidade metassedimentar localizada na Zona Interna da Faixa Brasília (Fuck, 1990), que se estende por cerca de 700 km na direção NW-SE, desde o S-SW de Minas Gerais até o NW de Goiás (Figura 1). O Grupo Araxá foi definido, na região de Araxá-MG, sob a denominação de Formação Araxá (Barbosa, 1955). Barbosa et al. (1969) levam a denominação "Grupo Araxá" para o norte do estado de Goiás (regiões de Canabrava, Niquelândia, Peixe, Uruaçu, São Miguel do Araguaia, Amaralina e Araguaçu). Posterior-mente Barbosa et al. (1970a) estendem o Grupo Araxá para a porção sudeste do estado de Goiás (Folha Catalão) e Barbosa et al. (1970b) para a porção centro-sul do estado de Goiás (Folhas Anápolis, Morrinhos, Ipameri. Pirenópolis, Luziânia e Campo Alegre de Goiás). Embora ocorram variações no empilhamento tectono-estratigráfico, o Grupo Araxá ao longo de sua extensão é constituído dominantemente por rochas metassedimentares psamíticas (quartzitos, quartzitos micáceos) e pelíticas (calci-xistos, muscovita-quartzo xisto, muscovita-clorita xisto, biotita-granada xisto, estaurolita xisto e xistos feldspáticos), localmente com lentes de gnaisse anfibolito, anfibolito, metaultramáfica retroeclogito (Fuck & Marini, 1981).

Figura 1. Mapa esquemático da Província Tocantins e da Faixa Brasília. Zona Externa: I - Grupos Paranoá, Canastra e Formações Vazante, Ibiá e porções de seu embasamento. Zona Interna: II – Granulitos e rochas associadas (Complexo Granulítico Anápolis-Itauçu e Associação Ortognáissica Migmatítica), rochas metavulcanossedimentares e granitoides associados. III – Grupo Araxá e granitoides associados. (mod. de Fuck, 1990; Hasui, 2012).

Na porção SE do Estado de Goiás, o Grupo Araxá ocorre em dois pacotes dominados por xistos, colocados tectonicamente abaixo e acima do Complexo Anápolis-Itauçu e da Associação Ortognáissica Migmatítica (Figura 2). O Grupo Araxá no pacote inferior (Unidade A) é constituído por rochas metassedimentares pelíticas, psamo-pelíticas e psamíticas (muscovita-clorita xisto. biotita-muscovita-quartzo xisto, granada-muscovita-clorita xisto, cloritaquartzo xisto, sericita quartzito, hematita xisto, hematita-sericita xisto, hematita-sericita quartzito) depositadas em ambiente plataformal (marinho raso) metamorfisadas em fácies xisto verde alto (Unidade A de Lacerda Filho et al., 1999; Moreira et al., 2008). Sequências metavulcanossedimentares (na região de Ipameri - Catalão: sequência Rio Veríssimo) e grande quantidade de corpos intrusivos graníticos (granitos tipo Ipameri: Encruzilhada, Sesmaria e Tambú) ocorrem associados ao Grupo Araxá no pacote inferior.

Na base do pacote superior, aflora a sequência metavulcanossedimentar Maratá, rochas metassedimentares relacionadas com a Unidade A e corpo granítico tipo Ipameri (Granito Cachoeira do Maratá, Moreira et al., 2008). A Unidade A da porção inferior do pacote superior é semelhante ao observado no pacote inferior, entretanto a ocorrência de rochas metassedimentares psamíticas é maior (quartzito, sericita quartzito).

Sobre a Unidade A ocorrem rochas metassedimentares pelíticas, psamo-pelíticas e psamíticas (calci-clorita-biotita xisto, calci-clorita-biotita xisto, calci-clorita-biotita xisto feldspático, granada-clorita xisto, hornblenda-granada xisto feldspático, grafita xisto e lentes de metacalcário e quartzito) depositadas em ambiente marinho metamorfisadas em fácies anfibolito (Unidade B de Lacerda Filho et al., 1999; Moreira et al., 2008).

Lentes de rochas metamáficas (anfibolito, granada anfibolito, anfibólio xisto) e metaultramáficas (serpentinito, actinolita xisto, clorita xisto e talco xisto, localmente com lentes de cromita podiforme associadas) ocorrem em ambas unidades do Grupo Araxá na região. Estas ocorrências são interpretadas como restos de assoalho oceânico, assumindo características de mélange ofiolítica (Drake Jr., 1980; Nilson, 1984; Brod et al., 1991; Strieder & Nilson, 1992; Zanardo et al., 1996; Dardenne, 2000; Valeriano et al., 2004), obductada por cima de uma margem continental por meio de nappes, com movimento do topo de W para E (Valeriano et al., 2004).

Figura 2. Mapa geológico regional (esquemático) da área de estudo (mod. de Moreira et al., 2008).

Idades modelo T_{DM}Nd de rochas metassedimentares do Grupo Araxá mostram distribuição bimodal (Pimentel et al., 1999, 2001; Piuzana et al., 2003; Simões, 2005; Klein 2008), com idades modelo variando entre 1,0 - 1,46 Ga e entre 1,76 - 2,26 Ga, sugerindo que a fonte das rochas metassedimentares do Grupo Araxá são rochas relacionadas ao Arco Magmático de Goiás (idades mais jovens) e a terrenos paleoproterozoicos (idades mais antigas). Pimentel et al. (2001) sugerem que as rochas metassedimentares com idades mais antigas representariam sequências distais de margem passiva, enquanto as rochas metassedimentares com idades mais jovens corresponderiam a sedimentos depositados em bacia tipo back arc. Entretanto, Pimentel et al. (2011) sugerem que as rochas metassedimentares do Grupo Araxá foram depositadas em bacias sin-orogênicas (talvez do tipo fore arc). Dados isotópicos U/Pb (em cristais de zircão detríticos) e Sm/Nd sugerem que a sedimentação do Grupo Araxá ocorreu durante o Neoproterozoico, entre 0,64 – 0,9 Ga (Navarro et al., 2013; Pimentel et al., 2001, 2011; Piuzana et al., 2003).

Apesar do grande número de trabalhos realizados no Grupo Araxá ao longo de sua extensão (Araújo et al., 1980; Barbosa et al., 1969; Barbosa et al., 1970a, b; Fuck & Marini, 1981; Lacerda Filho et al., 1999; Moreira et al., 2008; Pimentel et al., 2001; RADAMBRASIL, 1983; Seer, 1999; Simões, 2005; Valente, 1986; Valeriano et al., 2004; Zanardo, 1992; Zanardo et al., 1996; entre muitos outros) grande parte das rochas metassedimentares do Grupo Araxá, em especial na área de estudo, carecem de estudos mais aprofundados sobre sua proveniência.

A utilização da composição química de sedimentos e de diagramas discriminantes para determinação da proveniência e do ambiente tectônico de bacias sedimentares tem sido abordada por diversos autores (Bhatia, 1983; Bhatia & Crook, 1986; Floyd et al., 1989; Feng et al., 1993; Slack & Stevens, 1994; Cullers, 2000, 2002; Ugarkar & Nyamati, 2001; Basson et al., 2004; Armstrong-Altrin & Verma, 2005; Campo & Guevara, 2005; Selvaraj & Chen, 2006; Armstrong-Altrin, 2009; Bakkiaraj et al., 2010; Raza et al., 2010; Campos Neto et al., 2011; Fatima & Khan, 2012; Raza et al., 2012; Westin & Campos Neto, 2013 Santos et al., 2015, entre outros). Muitos autores questionam a eficácia da utilização da composição química de sedimentos para determinar ambientes deposicionais e seu contexto geotectônico (Weltje, 2006, 2012; Ryan & Williams, 2007; Pe-Piper et al., 2008; Armstrong-Altrin, 2009; Guo et al., 2011; von Eynatten & Dunkl, 2012; Zaid, 2012, entre outros).

Entretanto, elementos terras raras (ETR), elementos traço (como Sc, Co, Th, U, Zr, Hf) e suas razões (como La/Sc, Th/Sc, Th/U, Zr/Sc, Cr/Th, Eu_(N)/Eu*_(N), ETRL_(N)/ETRP_(N)) são considerados eficientes para determinar as características das rochas fontes de sedimentos, uma vez que não são facilmente mobilizados em processos posteriores à sedimentação e/ou metamorfismo, preservando as características das rochas fontes (Cullers et al., 1974; Taylor & McLennan, 1981, 1985; Bhatia & Crook, 1986; McLennan et al., 1993; Roser et al., 1996; Etemad-Saeed et al., 2011; Fu et al., 2010; Zaid, 2012, entre outros). Idades U/Pb (em cristais de zircão detríticos), dados isotópicos Sm/Nd e idades modelo (T_{DM}Nd) são também importantes ferramentas para

CARACTERÍSTICAS DO GRUPO ARAXÁ NA REGIÃO DE ESTUDO

Grupo Morrinhos 0 Araxá entre Marcelândia (Figura 3) é constituído principalmente por rochas metassedimentares pelíticas (granada-biotita-muscovita xistos. biotita/muscovita xistos, hornblenda-granadabiotita paragnaisses, granada-biotita-muscovita paragnaisses, hornblenda-granada-biotita paragnaisses, localmente com cianita e estaurolita), avaliação da proveniência, estabelecendo respectivamente as idades das rochas fontes.

trabalho visa apresentar Este dados geoquímicos e isotópicos (U-Pb e Sm-Nd) das rochas metassedimentares do Grupo Araxá que região de ocorrem na Morrinhos Marcelândia, com o intuito de reconhecer as características das áreas fontes que deram origem à Unidade B de Lacerda Filho et al. (1999) nesta região.

com intercalações de rochas metassedimentares psamíticas/psamo-pelíticas (quartzitos, muscovita quartzitos, quartzo xistos, biotita-muscovitaquartzo xistos), lentes de metamá-ficas (anfibolito, granada anfibolito) e de metaultramáficas (serpentinito, talco xisto. clorita xisto, tremolita/actinolita xisto) (Simões, 2005; Navarro et al., 2013).

Figura 3. Mapa geológico simplificado da área de estudo, mostrando a localização das amostras analisadas (mod. de Simões, 2005; Moreira et al., 2008).

Corpos graníticos intrusivos no Grupo Araxá (Figura 3), denominados informalmente de ortognaisses Rochedo (Navarro et al., 2014), ocorrem na porção NW da área. São corpos ovalados com orientação geral E-W, representados por biotita-muscovita ortognaisse e muscovita ortognaisse, com composição variando entre tonalito e granodiorito. Quimicamente estes corpos graníticos são peraluminosos, cálcioalcalinos e são classificados como do tipo-S e/ou MPG (Muscovite-bearing Peraluminous Granitoids). As características químicas sugerem que estes corpos graníticos derivam da fusão parcial de rochas metassedimentares do Grupo Araxá (Navarro et al., 2014).

Associações minerais relacionadas ao pico

metamórfico nas rochas metassedimentares do Grupo Araxá na área de estudo são típicas da fácies anfibolito médio a superior, caracterizadas por biotita + oligoclásio/andesina + granada + hornblenda; biotita + plagioclásio + granada e/ou granada + oligoclásio/andesina + biotita ± cianita, todas contendo quartzo e muscovita, sendo rutilo e ilmenita os principais associados. pico metamórfico óxidos 0 registrado nas rochas do Grupo Araxá é correlacionável à fase deformacional pré- a sintermobarométricos (regional). Dados Dn mostram que o pico metamórfico ocorreu a 610°C e ~10 kbar, em condições de fácies anfibolito, zona da cianita, e sugerem trajetória P-T horária, típica de cinturões colisionais (Navarro et al., 2009, 2011).

Idades modelo de rochas metassedimentares

MÉTODOS ANALÍTICOS

Foram selecionadas 10 amostras de rochas metassedimentares do Grupo Araxá que ocorrem entre Morrinhos -Marcelândia (GO) para estudos litogeoquímicos de elementos maiores, menores e traços. As análises químicas foram realizadas pelo Laboratório Acme (Analytical Laboratories LTD, Vancouver, Canadá).

Os elementos maiores foram analisados por Emissão Plasma Espectrômetro de em Indutivamente Acoplado (ICP-ES) e OS foram analisados elementos traço no Espectrômetro de Massa em Plasma Indutivamente Acoplado (ICP-MS). Os resultados das análises geoquímicas são apresentados na Tabela 1 (Apêndice, ao final do artigo), e a localização das amostras, na Figura 3.

Seis amostras (A5, A54, A55, A73, A109, A115) foram selecionadas para análises isotópicas Sm/Nd. As análises isotópicas foram feitas no Laboratório de Geocronologia e Isótopos Radiogênicos (LAGIR), da Faculdade de Geologia, da Universidade do Estado do Rio de Janeiro, segundo o método descrito por

As rochas metassedimentares do Grupo Araxá analisadas correspondem a xistos (muscovitabiotita xistos com granada) e paragnaisses (biotitamuscovita paragnaisse com ou sem granada e hornblenda, granada-biotita gnaisse e granadamuscovita-gnaisse com ou sem cianita). Possuem grande variação nos teores de SiO₂, variando entre 58,29% e 73,53%, de Al₂O₃ entre 12,70% e 18,76%, de $\text{Fe}_2\text{O}_3^{\text{T}}$ entre 4,29% e 10,22% e de K₂O do Grupo Araxá entre Mairipotaba - Morrinhos variando entre 1,25 – 1,51 Ga e entre 1,76 – 2,26 Ga (Navarro et al., 2012, 2013), sugerem que a fonte das rochas metassedimentares do Grupo Araxá são rochas neoproterozoicas (Arco Magmático de Goiás) e rochas mais antigas (terrenos paleoproterozoicos), como observado em outras regiões da Faixa Brasília (Pimentel et al., 1999, 2001; Piuzana et al., 2003; Simões, 2005; Klein, 2008).

Dados isotópicos U/Pb (análise LA-ICP-MS em cristais de zircão detríticos) em uma amostra do Grupo Araxá, na região de Morrinhos (Navarro et al., 2013), também sugerem que a sedimentação do Grupo Araxá ocorreu durante o neoproterozoico, entre 0,64 - 0,9 Ga como sugerido por outros autores (Pimentel et al., 2001; Piuzana et al., 2003; Hasui, 2012).

Valeriano et al. (2009). As leituras das razões foram realizadas utilizando o espectrômetro de massa por ionização térmica TRITON-TI. A razão ¹⁴³Nd/¹⁴⁴Nd foi normalizada em função da razão ¹⁴⁶Nd/¹⁴⁴Nd de 0.7219 (La Jolla). Os valores de TDM foram calculados usando o modelo de De Paolo (1981). Os resultados das análises são mostrados na Tabela 2 (Apêndice, ao final do artigo).

Quatro amostras (A54, A73, A109, A115) foram selecionadas para estudos de proveniência (idades U/Pb em cristais de zircão detríticos por LA-ICP-MS). As análises isotópicas U/Pb foram feitas no Laboratório de Geocronologia, do Instituto de Geociências, da Universidade Federal de Brasília (UnB), segundo o método descrito por Bühn et al. (2009).

As leituras das razões foram realizadas por espectrômetro de massa multicoletor com ablação a laser (LA-ICP-MS), modelo Finnigan MAT 262 em modo estático. Os resultados das análises de cristais de zircão são mostrados na Tabela 3 (Apêndice, ao final do artigo).

RESULTADOS E DISCUSSÕES

entre 1,20% e 4,79%. O conteúdo de MgO varia entre 1,20% a 3,66%, o de CaO entre 0,10% a 5,10%, o de TiO₂ entre 0,52% a 1,10%, o de MnO entre 0,06% a 0,17%, o de P₂O₅ entre 0,10% a 0,21% e o de Na₂O varia entre 0,07% a 3,18%. Nos diagramas tipo Harker (Figura 4) observa-se correlações negativas de Al₂O₃, Fe₂O₃^T, MgO e P₂O₅ em relação a SiO₂, enquanto TiO₂, MnO, CaO, Na₂O e K₂O não apresentam correlações.

São Paulo, UNESP, Geociências, v. 38, n. 3, p. 655 - 675, 2019

Figura 4. Diagramas do tipo Harker para elementos maiores (% óxidos) x SiO₂.

Possuem pequena variação no conteúdo de Hf (4,4 – 7,8 ppm), Nb (7,5 – 18,5 ppm), Ta (0,5 – 1,3 ppm), Ga (14,3 – 25,8 ppm) e U (1,1 -2.7 ppm), grande variação nos teores de V (58,0 – 159,0 ppm), Rb (34,1 – 249,7 ppm), Sr (25,5 – 305,6 ppm), Ba (280,0 – 1084,0 ppm), Zr (156,9 – 282,5 ppm), Cr (54,74 – 205,26 ppm) e Ni (10,4 a 69,7 ppm). Os teores de Cs variam de 1,3 a 9,1 ppm, de Y variam entre 23,4 a 124,3 ppm, de Th varia entre 3,4 a 15,1 ppm, de Sc entre 8,0 a 23 ppm e de Pb varia entre 1,3 a 13,4 ppm. Nos diagramas tipo Harker (Figura 5) não se observam trends em relação a Ba, Rb, Sr, Nb, Ta, Zr, Hf, Y, Th, U e Pb em relação ao teor de SiO₂, e observam-se fracas correlações negativas em relação a Sr e Ga.

O padrão de distribuição de elementos traço (Cs, Ba, Rb, Th, U, Nb, Ta, Pb, Sr, Zr, Hf e Y), elementos terras raras (ETR), K (em ppm), P (em ppm) e Ti (em ppm), quando normalizados pelo manto primitivo (Taylor & McLennan, 1985), mostram que estas rochas metassedimentares são enriquecidos em Cs, K, Ba, Rb, Th, U, Pb e ETRL (elementos terras raras leves) em relação ao manto primitivo, mostrando fracas a médias anomalias negativas de Nb, Ta, Sr, P, Eu e Ti (Figura 6A).

A distribuição dos ETRP apresenta um padrão pouco inclinado a sub-horizontal, indicando fraco fracionamento entre os ETRP ($Gd_N/Lu_N = 1,14 - 2,05$). A relação entre ETRL e ETRP mostra forte fracionamento ($La_N/Lu_N = 4,40 - 14,15$), exibindo discretas a fortes anomalias negativas de Eu (Eu* = 0,43 - 0,81) (Figura 6B).

As rochas metassedimentares do Grupo Araxá na região possuem razões $La_{(N)}/Lu_{(N)}$ (4,40 – 14,15), La/Sc (0,89 – 11,67), Th/Sc (0,155 – 1,875), La/Co (0,944 – 11,13), Th/Co (0,199-1,948) e Cr/Th (4,984 – 30,186) que sugerem que a principal fonte destes sedimentos são rochas ígneas félsicas (Rahman & Suzuki, 2007; Raza et al., 2010).

Figura 5. Diagramas do tipo Harker para elementos traços (Ba, Rb, Sr, Nb, Ta, Zr, Hf, Y, Th, U, Pb, Ga em ppm) x SiO₂.

Figura 6. (A) Padrão de distribuição de elementos menores/traços, maiores (K, P, Ti em ppm) e ETR normalizados pelo Manto Primitivo (Taylor & McLennan, 1985) para as amostras analisadas; (B) Padrão de distribuição de ETR normalizados pelo Manto Primitivo (Taylor & McLennan, 1985) para as amostras analisadas.

No diagrama Th/Sc *versus* Zr/Sc (Figura 7) as amostras analisadas concentram-se próximo ao limite proposto por McLennan et al. (1993) para a mudança de uma tendência de variação composicional da rocha fonte dos sedimentos, relacionada com processos ígneos e o início de um processo de reciclagem sedimentar, preservando, contudo, o *trend* associado a rochas ígneas.

Segundo Taylor & McLennan (1985), rochas sedimentares com razão Th/Sc > 1 sugerem que a fonte de sedimentos são rochas ígneas bastante evoluídas, enquanto a razão Th/Sc < 0,8 refletem contribuições de fontes máficas. Razões Zr/Sc > 10 e Th/U > 4 sugerem uma fonte matura ou reciclagem de sedimentos (Tripathi & Rajamani, 2003) (Figura 7).

Estas razões aplicadas aos metassedimentos do Grupo Araxá sugerem uma fonte matura de

rochas félsicas de composição intermediária.

Bhatia & Crook (1986) propuseram a utilização de diagramas binários (Ti/Zr *versus* La/Sc e La/Y *versus* Sc/Cr) e ternários (La-Th-Sc, Th-Co-Zr/10 e Th-Sc-Zr/10) para caracterizar a proveniência de sedimentos e determinar o ambiente tectônico de sedimentação.

A utilização destes diagramas para as amostras analisadas sugere que a fonte das rochas metassedimentares são rochas formadas em arcos magmáticos (Figura 8A, B, C, D, E).

Os diagramas discriminantes TiO₂ versus $Fe_2O_3^T+MgO$, (Al_2O_3/SiO_2) versus $Fe_2O_3^T+MgO$, (K_2O/Na_2O) versus $Fe_2O_3^T+MgO$, $(Al_2O_3/CaO+Na_2O)$ versus Fe_2O_3T+MgO (Bhatia, 1983) também sugerem similaridades químicas com sedimentos de ambientes de arcos de ilha continentais (Figura 8F, G, H, I).

Figura 7. A) Diagrama Th/Sc x Zr/Sc (McLennan et al., 1993); B) Diagrama Th/U x Zr/Sc (modificado de Taylor & McLennan, 1985) das amostras analisadas.

As razões isotópicas $^{147}\mathrm{Sm}/^{144}\mathrm{Nd}$ e $^{143}\mathrm{Nd}/^{147}\mathrm{Nd}$ (Tabela 2) obtidas para as amostras de rochas metassedimentares do Grupo Araxá na região de Morrinhos – Marcelândia revelam idades $T_{DM}\mathrm{Nd}$ variando entre 1,25 e 1,93 Ga, $\epsilon\mathrm{Nd}_{(0)}$ entre -12,87 e -5,15, razões $^{147}\mathrm{Sm}/^{144}\mathrm{Nd}$ variando entre 0,1215 – 0,140 e de $^{143}\mathrm{Nd}/^{147}\mathrm{Nd}$ variando entre 0,51198 – 0,512374.

Os resultados são semelhantes a dados isotópicos em rochas metassedimentares do Grupo Araxá em outras regiões do Estado de Goiás (Pimentel et al., 1999, 2001; Piuzana et al., 2003; Simões, 2005; Klein, 2008; Navarro et al., 2013), que mostram valores ¹⁴⁷Sm/¹⁴⁴Nd entre 0,079 – 0,234 e ¹⁴³Sm/¹⁴⁴Nd entre 0,511397 – 0,512446, além de T_{DM}Nd variando entre 1,00 – 2,26 Ga, distribuindo-se em dois conjuntos, um com T_{DM}Nd entre 1,00 e 1,46 Ga e outro com T_{DM}Nd

entre 1,76 e 2,26 Ga (Figura 9). A presença marcante de rochas metassedimentares com $T_{DM}Nd$ variando entre 1,1 – 1,3 Ga no Grupo Araxá sugere uma fonte neoproterozoica para a origem dos sedimentos, provavelmente rochas relacionadas ao Arco Magmático de Goiás. As idades mais antigas teriam como fonte rochas relacionadas ao Cráton do São Francisco (Pimentel et al., 1999, 2001; Piuzana et al., 2003; Klein, 2008; Navarro et al., 2013).

As razões isotópicas 147 Sm/ 144 Nd e 143 Nd/ 147 Nd (Tabela 2) obtidas para as amostras de rochas metassedimentares do Grupo Araxá na região de Morrinhos – Marcelândia revelam idades T_{DM}Nd variando entre 1,25 e 1,93 Ga, ϵ Nd₍₀₎ entre -12,87 e -5,15, razões 147 Sm/ 144 Nd variando entre 0,1215 – 0,140 e de 143 Nd/ 147 Nd variando entre 0,51198 – 0,512374.

Figura 8. Diagramas discriminantes das amostras analisadas. A), B), C), D) e E) Bhatia & Crook (1986), F), G), H) e I) Bhatia (1983).

III - Composição isotópica de rochas do Cráton do São Francisco (Pimentel et al., 2001)

- IV Composição isotópica de rochas do Maciço Mediano de Goiás (Pimentel et al., 1996)
 V Composição isotópica das amostras analisadas neste trabalho

Figura 9. A) Composição isotópica ¹⁴³Nd/¹⁴⁴Nd e idades modelo das amostras analisadas. B) Variação dos valores de ɛNd no tempo geológico das amostras analisadas (modificado de Navarro et al., 2013).

Foram analisados 224 grãos de cristais de zircão (41 cristais de zircão da amostra A54, 61 cristais de zircão da amostra A73, 61 cristais de zircão da amostra A109, 61 cristais de zircão da amostra A115), por LA-ICP-MS. As idades obtidas variam em 3 conjuntos (Figura 10): o primeiro grupo variando entre ~600 a ~1100 Ma (129 cristais de zircão), o segundo grupo variando entre >1100 e ~1500 Ma (60 cristais de zircão), e o terceiro com idades maiores que 1,7 Ga (38 cristais de zircão, com idades entre 1715 a 2731).

As idades obtidas mostram que os cristais de zircão de idade neoproterozoica são os mais abundantes (< 900 Ma), indicando que a principal fonte desses sedimentos são rochas neoprote-rozoicas (Figura 10).

Figura 10 - Mapa geológico simplificado com a localização das amostras analisadas, idades modelo e os respectivos histogramas das idades dos cristais de zircão detríticos analisados. * idades compiladas de Navarro et al. (2013). ** idade compilada de Pimentel et al. (2000)

CONCLUSÃO

As razões La_(N)/Lu_(N), La/Sc, Th/Sc, La/Co, Th/Co, Cr/Th e Th/U obtidas para as amostras de rochas metassedimentares do Grupo Araxá na região de Morrinhos - Rochedo - Marcelândia, sugerem que estas rochas são derivadas de rochas ígneas félsicas. As idades modelo T_{DM}Nd obtidas possuem valores entre 1,21 e 1,76 Ga, sugerindo duas fontes para as rochas metassedimentares, uma fonte neoproterozoica (Arco Magmático de Goiás) e outra mais antiga relacionada a rochas mesopaleoproterozoicas. As idades U/Pb em cristais de zircão também sugerem a contribuição de uma fonte neoproterozoica (<1,0 Ga) e uma contribuição de outra fonte mais antiga mesoproterozoica (>1,0 Ga). A congruência destes dados geocronológicos com as assinaturas geoquímicas das rochas analisadas permite que afirmar grande parte das rochas metassedimentares do Grupo Araxá na região tem como fonte rochas formadas em arcos magmáticos neoproterozoicos.

As idades U/Pb obtidas em cristais de zircão para as rochas metassedimentares da *Nappe* de Passos (Valeriano et al., 2004) são predominantemente mesoproterozoicas ou mais antigas (>1,2 Ga), enquanto as idades obtidas para as fontes das rochas metassedimentares do Grupo Araxá na região de Morrinhos – Marcelândia são predominantemente neoproterozoicas (<1,0 Ga), com contribuições restritas de fontes mais antigas (>1,0 Ga), sugerindo duas fontes distintas e/ou provavelmente ambientes deposicionais diferentes, para as rochas metassedimentares da "Bacia Araxá".

Para Dardenne (2000), Trouw et al. (2000) e Valeriano et al. (2004) as rochas metassedimentares da *Nappe* de Passos são parte de uma sequência sedimentar de margem passiva que se estabeleceu no entorno do Cráton do São Francisco durante o Neoproterozoico. Entretanto, as rochas metassedimentares da região de Morrinhos – Marcelândia possuem assinaturas químicas de sedimentos derivados de rochas formadas em arcos magmáticos.

Como as características químicas/ mineralógicas dos sedimentos são influenciadas pela proximidade com a área fonte e com o tipo de litologias que compõem essa área, os dados apresentados indicam que os sedimentos do Grupo Araxá foram depositados em bacias tipo *fore arc*, durante o neoproterozoico.

AGRADECIMENTOS

Os autores agradecem à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), processo 2013/04235-2.

REFERÊNCIAS

- ARAÚJO, V.A.; GODOI, P.V.B.; ARAUJO, H.O.; MORETON, E.S.; SILVA, L.C.; SA, M.A.D.; MARTINS, A.M.; MATOS, E.G, ANDRADE, S.H.S.; SALES, R., BEBERT, C.O.; OLIVATTI, O. Projeto Pontalina – Fase I. Goiânia: SURGEO/GO, DNPM, CPRM. 1980, 7v.
- ARMSTRONG-ALTRIN, J.S. Provenance of sands from Cazones, Acapulco, and Bahía Kino beaches, Mexíco. **Rev. Mex. Cienc. Geol.**, v. 26, n. 3), p. 764–782, 2009.
- ARMSTRONG-ALTRIN, J.S. & VERMA, S.P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. **Sedimentary Geology**, v. 177, p. 115–129, 2005.
- BAKKIARAJ, D.; NAGENDRA, R.; NAGARAJAN, R.; ARMSTRONG-ALTRIN, J.S. Geochemistry of sandstones from the Upper Cretaceous Sillakkudi Formation, Cauvery Basin, southern India: implication for provenance. J. Geol. Soc. India, n. 76, p. 453–467, 2010.
- BARBOSA, O. Guia de excursão. In: CONGRESSO BRASILEIRO DE GEOLOGIA, IX, Araxá, 1955. **Noticiário...** Araxá: Sociedade Brasileira de Geologia, nº 3, p 1-7.
- BARBOSA, O.; BRAUN, O.P.G.; CARTNER-DYER, R.; CUNHA, C.A.B. Geologia da Região do Triângulo Mineiro. Ministério das Minas e Energia (MME), Departamento Nacional da Produção Mineral (DNPM), Divisão de Fomento da Produção Mineral (DFPM). Rio de Janeiro, Boletim 136, 210p, 1970a.
- BARBOSA, O.; BAPTISTA, M. B.; INDA, H., MARCHETTO, M.; ARAÚJO, A.G.; BRAUN, O.P.C.; FRANTIN, O.; CARTNER-DYER, R., REN, C.; MENEGUESSO, G.; ANDRADE, R.; SEIXAS, S.R.M.; REIS, A.; COTTA, J.C.; SILVA, W.G.; DUTRA, C.V. Projeto Goiânia – Relatório Preliminar. Ministério das Minas e Energia (MME), Departamento Nacional da Produção Mineral (DNPM), 6°

Distrito Centro-Oeste, Prospec S.A. 74p., 1970b.

- BARBOSA, O.; SORIANO, C.R.; ARRUDA, M., BAPTISTA, M.B.; CARTNER-DYER, R.; BRAUN, O.P.G.; INDA, H.; MARCHETTO, M.; FRATIN, O.; SEIXAS, S.R.M.; MENEGUESSO, G.; REN, C.; COTTA, J.C. Projeto Brasília
 Goiás. Ministério das Minas e Energia (MME), Departamento Nacional da Produção Mineral (DNPM), Prospec S.A. 225 p., 1969.
- BASSON, I.J.; PERRITT, S.; WATKEYS, M.K.; MENZIES, A.H. Geochemical Correlation Between Metasediments of the Mfongosi Group of the Natal Sector of the Namaqua-Natal Metamorphic Province, South Africa and the Ahlmannryggen. Group of the Grunehogna Province, Antarctica. Gondwana Research, v. 7, p. 1, p. 57-73, 2004.
- BHATIA, M.R. Plate tectonics and geochemical composition of sandstones. **The Journal Of Geology, Chicago**, v. 91, n. 6, p. 611-627, 1983.
- BHATIA, M.R. & CROOK, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. **Contributions to Mineralogy and Petrology, v.** 92, p. 181-193, 1986.
- BROD, J.A.; LEONARDOS, O.H.; MENESES, P.R.; ALMEIDA, R.; ARAÚJO, R.N.J.; BLANCO, S.B.; CARDOSO, F.B.F.; CARVALHO Jr., O.A.; JUNQUEIRA, F.F.; RIEHL Jr, W.; SOUZA, J.C.F.; TALLARICO, F.H.T.; THOMSEM, F.P.R.; ALBUQUERQUE, M.A.C.; BERBET, M.L.C.; CERQUEIRA, M.R.S.; CHAGAS, M.A.; DIAS, R.R.; LIMA, C.V.; NAKAMURA, E.T.; PORTO S., G.; ROMÃO, P.A.; SANTOS, P.C.V. Tectono-estratigrafia da Faixa Brasília na região do Alto Paranaíba. In: Simpósio de Geologia do Centro-Oeste, III, Cuiabá, 1991. Anais... Cuiabá: Sociedade Brasileira de Geologia, v. 3, p. 155-168, 1991.

- BÜHN, B.; PIMENTEL, M.M.; MATTEINI, M.; DANTAS, E.L. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Anais da Academia Brasileira de Ciências, v. 81, nº 1, p. 99-114, 2009.
- CAMPO, M. & GUEVARA, S.R. Provenance analysis and tectonic setting of late Neoproterozoic metasedimentary successions in NW Argentina. Journal of South American Earth Sciences, v. 19, p. 43–153, 2005.
- CAMPOS NETO, M.C., BASEI, M.A.S., JANASI, V.A., MORAES, R. Orogen migration and tectonic setting of the Andrelândia Nappe system: An Ediacaran western Gondwana collage, south of São Francisco craton. Journal of South American Earth Sciences, v. 32, p. 393-406, 2011.
- CULLERS, R.L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian – Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos, v. 51, p. 181–203, 2000.
- CULLERS, R.L. Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. *Chemical Geology*, v. 191, p. 305–327, 2002.
- CULLERS, R.L.; YEH, L.T.; CHAUDHURI, S.; GUIDOTTI, C.V. Rare earth elements in Silurian pelitic schists from N.W. Maine. **Geochimica et Cosmochimica Acta**, v. 38, p. 389–400, 1974.
- DARDENNE, M.A. The Brasília fold belt. In: U.G. Cordani, E.J. Milani, A. Thomaz Filho, D.A. Campos (Eds.), Tectonic Evolution of South America (231-264). Thirty-first International Geological Congress, Rio de Janeiro: Sociedade Brasileira de Geologia, 2000.
- DE PAOLO, D.J. A neodymium ans strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, Califórnia. Journal of Geophysical Research, v. 86, p. 10470-10488, 1981.
- DRAKE Jr., A.A. The Serra de Caldas windows. Tectonic Studies in the Brazilian shield. U. S. Geological Survey, Protessional Paper, 1999-A, B. p. A1 – A11, 1980.
- ETEMAD-SAEED, N.; HOSSEINI-BARZI, M.; ARMSTRONG-ALTRIN, J.S. Petrography and geochemistry of clastic sedimentary rocks as evidence for provenance of the Lower Cambrian Lalun Formation, Posht-ebadam block, Central Iran. Journal of African Earth Sciences, v. 61, p. 142–159, 2011.
- FATIMA, S. & KHAN, M.S. Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution. International Geology Review, v. 54, n. 10, p. 1113–1144, 2012.
- FENG, R.; KERRICH, R.; MAAS, R. Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition. Geochimica et Cosmochimica Acta, v. 57, p. 641-658, 1993.
- FLOYD, P.A., WINCHESTER, J.A., PARK, R. G. Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. **Precambrian Research**, v. 45, p. 203-214, 1989.
- FU, X.; WANG, J.; ZENG, Y.; TAN, F.; FENG, X. REE geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. International Journal of Coal Geology, v. 81, p. 191–199, 2010.
- FUCK, R.A. Dobramentos neoproterozoicos da margem Ocidental do Cráton do São Francisco: revisão. In: CONGRESSO BRASILEIRO DE GEOLOGIA, XXXVI, Natal, 1990. Anais...Natal: Sociedade Brasileira de Geologia, 1990, v. 1, 288-289.
- FUCK, R.A. & MARINI, O.J. O Grupo Araxá e unidades homotaxiais. In: SIMPÓSIO SOBRE O CRÁTON DO SÃO FRANCISCO E SUAS FAIXAS MARGINAIS, I, Salvador, 1981. Anais...Salvador: Sociedade Brasileira de Geologia, p. 118-130.
- GUO, Q.; XIAO, W.; WINDLEY, B. F.; MAO, Q.; HAN, C.;

QU, J.; AO, S.; LI, J.; SONG, D.; YONG, Y. Provenance and tectonic settings of Permian turbidites from the Beishan Mountains, NW China: implications for the Late Paleozoic accretionary tectonics of the Southern Altaids. **Journal of Asian Earth Sciences**, v. 49, p. 54–68, 2011.

- HASUI, Y. Sistema Orogênico Tocantins. In: Y. Hasui, C.D.R. Carneiro, F.F.M. Almeida, A. Bartorelli (Eds.), Geologia do Brasil (289-325). São Paulo: Beca. 2012.
- KLEIN, P.B.W. Geoquímica de rocha total, geocronologia de U-Pb e geologia isotópica de Sm – Nd das rochas ortognáissicas e unidades litológicas associadas da região de Ipameri – Catalão (Goiás). Brasília, 2008. Tese (Doutorado) - Instituto de Geociências, Universidade de Brasília. 2008.
- LACERDA FILHO, J.V.; REZENDE, A.; SILVA, A. **Programa de Levantamentos Geológicos Básicos do Brasil - Geologia e Recursos Minerais do Estado de Goiás e Distrito Federal**. 1:500.000. 2º edição. Goiânia: conv. CPRM – Superintendência Regional de Goiânia/METAGO S.A./UnB., 217 p., 1999.
- MCLENNAN, S.M.; HEMMING, S.; MCDANIEL, D.K.; HANSON, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. **Geological Society of America**, **Special Paper**, v. 284, p. 21-40, 1993.
- MOREIRA, M.L.O.; MORETON, L.C.; ARAÚJO, V.A.;
 LACERDA FILHO, J.V.; COSTA, H.F. Geologia do Estado de Goiás e Distrito Federal. 1:500.000. Goiânia: CPRM/SIC
 FUNMINERAL. Programa Geologia do Brasil: Integração, Atualização e Difusão de Dados de Geologia do Brasil. Programa Geologia e Mineração do Estado de Goiás: Geração e Disponibilização de Informações Geológicas e do Potencial Mineral de Goiás. 143 p., 2008.
- NAVARRO, G.R.B.; MORAES, R.; ZANARDO, A.; SIMÕES, L.S.A.; CONCEIÇÃO, F.T. Trajetória *P-T* e condições do metamorfismo usadas como ferramenta para a compartimentação tectônica da Faixa Brasília em Goiás. **Revista Brasileira de Geociências**, v. 39, n. 3, p. 544-559, 2009.
- NAVARRO, G.R.B.; ZANARDO, A.; CONCEIÇÃO, F.T.; MORAES, R.; SIMÕES, L.S.A. Química Mineral e Estimativas de Pressão e Temperatura em Rochas Metassedimentares do Grupo Araxá na Região de Morrinhos, Sul do Estado de Goiás. **Geologia USP, Série Científica**, v. 11, n. 2, p. 3-20, 2011.
- NAVARRO, G.R.B.; ZANARDO, A.; CONCEIÇÃO, F.T. Grupo Araxá em Goiás, um exemplo de bacia tipo fore arc neoproterozoica. In: CONGRESSO BRASILEIRO DE GEOLOGIA, XLVI, Santos, 2012. Anais...Santos: Sociedade Brasileira de Geologia, 2012.
- NAVARRO, G.R.B.; ZANARDO, A.; CONCEIÇÃO, F.T. O Grupo Araxá na Região Sul-Sudoeste do Estado de Goiás. Geologia USP, Série Científica, v. 13, n. 2, p. 5-28, 2013.
- NAVARRO, G.R.B.; ZANARDO, A.; CONCEIÇÃO, F.T. Ortognaisses peraluminosos associados ao Grupo Araxá na região de Rochedo, Goiás. **Geociências**, v. 33, n. 4), p. 672-685, 2014.
- PE-PIPER, G.; TRIANTAFYLLIDIS, S.; PIPER, D. J. W. Geochemical identification of clastic sediment provenance from known sources of similar geology: the Cretaceous Scotian Basin, Canada. Journal of Sedimentary Research, v. 78, p. 595-607, 2008.
- PIMENTEL, M.M., FUCK, R.A., FISCHEL, D.P. Estudo isotópico Sm-Nd regional da porção central da Faixa Brasília: implicações para idade e origem dos granulitos do Complexo Anápolis-Itauçu e sedimentos do Grupo Araxá. **Revista Brasileira de Geociências**, v. 29, v. 2, p. 271-276, 1999.
- PIMENTEL, M.M.; FUCK, R.A.; JOST, H.; FERREIRA FILHO, C.F.; ARAÚJO, S.D. The basament of the Brasília fold belt and the Goiás magmatic arc. In: U.G. Cordani, E.J. Milani, A. Thomaz Filho, D.A. Campos (Eds.), Tectonic Evolution of South America (195-229). Thirty-first International Geological Congress, Rio de Janeiro: Sociedade Brasileira de Geologia, 2000.

PIMENTEL, M.M.; DARDENNE, M.A.; FUCK, R.A.; VIANA, M.G., JUNGES, S.L.; SEER, H.J.; FISCHEL, D.P. Nd isotopes

São Paulo, UNESP, Geociências, v. 38, n. 3, p. 655 - 675, 2019

and the provenance of sediments of the Neoproterozoic Brasília Belt, central Brazil. **Journal of South American Earth Sciences**, v. 14, p. 571-585, 2001.

- PIMENTEL, M.M.; RODRIGUES, J.B.; DELLAGIUSTINA, M.E.S.; JUNGES, S.; MATTEINI, M.; ARMSTRONG, R. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil, based on SHRIMP and LA-ICPMS U -Pb sedimentary provenance data: A review. Journal of South American Earth Sciences, v. 31, p. 34-357, 2011.
- PIUZANA, D.; PIMENTEL, M.M.; FUCK, R. A.; ARMSTRONG, R. SHRIMP U-Pb and Sm-Nd data for the Araxá Group and associated magmatic rocks: constraints for the age of sedimentation and geodynamic context of the southern Brasília Belt, central Brazil. **Precambrian Research**, v. 125, p. 139-160, 2003.
- RADAMBRASIL, Projeto. Folhas SF. 23/24 Rio de Janeiro/Vitória: geologia, geomorfologia, pedologia, vegetação e uso potencial da terra. Ministério das Minas e Energia, Rio de Janeiro, 1983, 780 p.
- RAHMAN, M.J.J. & SUZUKI, S. Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implications for Provenance, tectonic setting and weathering. **Geochemical Journal**, v. 41, p. 415-428, 2007.
- RAZA, M.; BHARDWAJ, V.R.; AHMAD, A.H.M.; MONDAL, M.E.A.; KHAN, A.; KHAN, M.S. Provenance and weathering history of Archaean Naharmagra quartzite of Aravalli craton, NW Indian Shield: Petrographic and geochemical evidence. Geochemical Journal, n. 44, p. 331–345, 2010.
- RAZA, M.; AHMAD, A.H.M.; KHAN, M.S.; KHAN, F. Geochemistry and detrital modes of Proterozoic sedimentary rocks, Bayana Basin, north Delhi fold belt: implications for provenance and source-area weathering. *International* Geology Review, v. 54, n. 1, p. 111–129, 2012.
- ROSER, B. P.; COOPER, R.A.; NATHAN, S.; TULLOCH, A.J. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the Lower Paleozoic terranes of the West Coast and Nelson, New Zealand. *New Zealand* Journal of Geology and Geophysics, n. 39, p. 1-16, 1996.
- RYAN, K.M. & WILLIAMS, D.M. Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentar basins. **Chemical Geology**, v. 242, p. 103-125, 2007.
- SANTOS, M.N.; CHEMALE JR., F.; DUSSIN, I.A.; MARTINS, M.S.; QUEIROGA, G.; PINTO, R.T.R.; SANTOS, A.N.; ARMSTRONG, R. Provenance and paleogeographic reconstruction of a mesoproterozoic intracratonic sag basin (Upper Espinhaço Basin, Brazil). Sedimentary Geology, v. 318, p. 40–57, 2015.
- SELVARAJ, K. & CHEN, C.T.A. Moderate chemical weathering of subtropical Taiwan: Constraints from solid-phase geochemistry of sediments and sedimentary rocks. **The Journal of Geology**, v. 114, v. 1, p. 101–116, 2006.
- SIMÕES, L.S A. Compartimentos Crustais do Domínio Interno da Faixa Brasília no sul do estado de Goiás. Rio Claro, 2005. Tese (Livre Docência) - Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista.
- SLACK, J.F. & STEVENS, B.P.J. Clastic metasediments of the Early Proterozoic Broken Hill Group, New South Wales, Australia: Geochemistry, provenance, and metallogenic significance. Geochimica et Cosmochimica Acta, v. 58, p. 17, p. 3633-3652, 1994.
- STRIEDER, A.J. & NILSON, A.A. Melange ofiolítica nos metassedimentos Araxá de Abadiânia (GO) e implicações tectônicas regionais. Revista Brasileira de Geociências, v. 22, n. 2, p. 204-215, 1992.
- TAYLOR, S.R. & MCLENNAN, S.M. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. **Philosophical Transactions of The**

Royal Society, v. 301, p. 381-399, 1981.

- TAYLOR, S.R. & MCLENNAN, S.M. The continental crust: its composition and evolution. Oxford: Blackwell Scientific Publications, 312p, 1985.
- TRIPATHI, K.J. & RAJAMANI, V. Geochemistry of Proterozoic Delhi quartzite: Implications for the provenance and source area weathering. Journal Geological Society of India, v. 62, p. 215–226, 2003.
- TROUW, R.A.J., HEILBRON, M., RIBEIRO, A., PACIULLO, F.V.P., VALERIANO, C.M., ALMEIDA, J.C.H., TUPINAMBÁ, M., ANDREIS, R.R. The central segment of the Ribeira belt. In: U. G. Cordani, E. J. Milani, A. Thomaz Filho, D. A. Campos (Eds.), Tectonic Evolution of South America (287-310). Thirty-first International Geological Congress, Rio de Janeiro: Sociedade Brasileira de Geologia, 2000.
- UGARKAR, A.G. & NYAMATI, R.C. Geochemical Characteristics of Archean Clastic Metasediments of Gadag Gold Field, Southern India: Implications for Provenance and Tectonic Setting. **Gondwana Research**, v. 5, n. 1, p. 245-255, 2001.
- VALENTE, C.R. Projeto Mapas Metalogenéticos e de Previsão de Recursos Minerais - Folha Morrinhos, SE.22-X-D. Brasília: DNPM/CPRM/SRG, 18 p, 1986.
- VALERIANO, C.M.; MACHADO, N.; SIMONETTI, A.; VALLADARES, C.S.; SEER, H.J.; SIMÕES, L.S.A. U–Pb geochronology of the southern Brasília belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. **Precambrian Research**, v. 130, p. 27–55, 2004.
- VÅLERIANO, C.M.; MEDEIROS, S.R.; VAZ, G.S., NETO, C.C. Sm-Nd isotope dilution TIMS analyses of BCR-1, AGV-1 and G-2 USGS rock reference materials: first results from the LAGIR Laboratory at UERJ, Rio de Janeiro. In: SIMPÓSIO 45 ANOS DE GEOCRONOLOGIA NO BRASIL, São Paulo, 2009. Atas...São Paulo: Sociedade Brasileira de Geologia, 2009, v. 1, 146-148.
- VON EYNATTEN, H. & DUNKL, I. Assessing the sediment factory: the role of single grain analysis. **Earth-Science Reviews**, v. 115, p. 97–120, 2012.
- WELTJE, G.J. Quantitative models of sediment generation and provenance: state of the art and future developments. **Sedimentary Geology**, v. 280, p. 4–20, 2012.
- WELTJE, G.J. Ternary sandstone composition and provenance: an evaluation of the Dickinson Model. In: A. Buccianti, G. Mateu-Figueras, V. Pawlowsky-Glahn (Eds.), Compositional Data Analysis in the Geosciences: From Theory to Practice (v. 264, 79–99, 2006), London: The Geological Society London, Special Publications.
- WESTIN, A. & CAMPOS NETO, M.C. Provenance and tectonic setting of the external nappe of the Southern Brasília Orogen. Journal of South American Earth Sciences, v. 48, p. 220-239, 2013.
- ZAID, S.M. Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. Journal African Earth Science, v. 66-67, p. 56–71, 2012.
- ZANARDO, A. Análise petrográfica, estratigráfica e microestrutural da região de Guaxupé-Passos-Delfinópolis (MG). Rio Claro, 1992. 288p. Tese (Doutorado) – Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista (UNESP).
- ZANARDO, A.; OLIVEIRA, M.A.F.; DEL LAMA, E.A.; CARVALHO, S.G. Geologia do Grupo Araxá de Passos-São Sebastião do Paraíso, sul de Minas Gerais. **Geociências**, v. 15, n. 1, p. 253-278, 1996.

Submetido em 06 de outubro de 2017 Aceito em 20 de setembro de 2019

APÊNDICE

Amostra	A5	A54	A55	A71	A73	A75	A109	A112	A114
SiO ₂	62,5	65,13	64,45	64,28	69,54	72,53	66,11	62,81	58,29
TiO ₂	0,87	0,77	0,81	0,62	1	0,52	1	0,77	1,1
Al ₂ O ₃	15,54	14,75	15,12	13,74	12,7	12,93	15,08	15,54	18,76
Fe ₂ O ₃ T	7,18	6,52	6,75	5,38	6,67	4,29	6,91	7,96	10,22
MnO	0,11	0,15	0.11	0,11	0,12	0.06	0.1	0,14	0.17
MgO	3.46	3.28	3.38	2.15	2.13	1.2	2.32	2.47	3.07
CaO	1.94	2.12	2.12	3.07	1.75	0.1	0.79	5.1	1.01
Na ₂ O	2.59	2.94	2.97	1.16	1.81	0.07	1.2	2.58	1.46
K ₂ O	3.25	2.05	2.23	4.23	2.62	4.79	3.51	1.76	4.24
P_2O_5	0.2	0.18	0.18	0.12	0.15	0.12	0.17	0.1	0.16
LOI	2.1	19	16	49	13	3.2	2.6	0.6	13
Total	99 75	99 78	99 78	99 77	99 79	99.78	<u>-</u> ,° 99 79	99.83	99.75
Sc	16	16	17	12	15	8	16	22	23
v	113	132	146	63	114	58	118	136	159
Ċr	102.63	130.00	116 31	109 47	136.84	82 10	88 94	54 73	116 31
	20.5	19.4	19	137	150,01	77	197	17.1	26.6
Ni	53.1	50.4	54 1	25.3	42.4	10.4	42 1	12.7	61.2
Cu	217	34.9	46.2	0.8	14 7	25.7	57 1	16.2	57 9
Zn	88	84	84	46	87	40	77	66	109
Rh	131.8	66 2	79 6	169.2	95 1	2497	125.9	114 5	176 3
Cs	91	4 4	54	7	53	7 1	7 1	79	89
Sr	217.1	213.2	229.2	, 58 1	123	25.5	111.8	173.4	105 4
Ba	647	491	485	1084	533	602	627	280	676
V V	29	28.8	30.8	23.4	35.1	124.3	32.5	23.9	40 5
Zr	175 2	172.4	177.6	162.5	282.5	211.5	205 7	173.8	198
Hf	4.8	4.6	4.8	4.7	7.2	6	6	4.6	5.6
Nb	15.1	8.3	8.3	12.4	14.8	11.4	15.5	10.8	15.9
Ta	1.1	0.7	0.6	1	1.1	0.8	1.1	0.8	1.2
Pb	2.5	1.7	2	4.9	2.2	13.4	3.5	1.3	3.1
Th	9.8	6.3	6	12.5	10.7	15	12.1	3.4	14.1
U	2	2	1.5	1.6	2.7	1.9	2.3	1.1	2.5
Ga	19,3	17	17,3	16,8	14,8	17,9	19,2	19,2	25,8
La	38,5	27,6	28	36,3	35,3	93,4	45,1	19,6	49,2
Ce	74,9	54,5	57	71,5	68,7	195,1	80,5	39	91,7
Pr	8,58	6,57	6,95	7,71	8,11	23,46	10,59	5,44	11,32
Nd	33,7	27	28,3	28,4	31,6	100,4	39,6	21	42,5
Sm	6,48	5,51	6,19	5,15	6,7	20,47	7,7	4,64	8,42
Eu	1,39	1,31	1,42	1	1,35	3,1	1,67	1,16	1,67
Gd	6,13	5,46	5,89	4,44	6,31	23,97	7,27	4,61	7,54
Tb	0,95	0,87	0,93	0,71	1,01	3,71	1,16	0,77	1,23
Dy	5,32	4,86	5,3	4,18	5,98	21,06	6,53	4,33	7,39
Но	1,03	1,07	1,18	0,89	1,26	4,12	1,17	0,83	1,38
Er	2,81	3,12	3,17	2,64	3,71	11,62	3,49	2,66	4,27
Tm	0,44	0,47	0,5	0,4	0,59	1,68	0,5	0,37	0,59
Yb	2,77	2,93	3,25	2,61	3,85	10,01	3,21	2,41	3,82
Lu	0,41	0,48	0,48	0,4	0,6	1,45	0,47	0,38	0,59
ΣΕΤR	183,41	141,75	148,56	166,33	175,07	513,55	208,96	107,2	231,62
ΣETRL	163,55	122,49	127,86	150,06	151,76	435,93	185,16	90,84	204,81
ΣΕΤRΡ	19,86	19,26	20,7	16,27	23,31	77,62	23,8	16,36	26,81
$La_{(N)}/Eu_{(N)}$	6,77	5,15	4,82	8,88	6,39	7,37	6,60	4,13	7,20
Gd(N)/Lu(N)	1,86	1,41	1,52	1,38	1,31	2,05	1,92	1,51	1,59
La(N)/Lu(N)	10,11	6,19	6,28	9,78	6,34	6,94	10,34	5,56	8,98
Eu*	0,67	0,72	0,71	0,62	0,63	0,43	0,67	0,76	0,63
La/Sc	2,41	1,73	1,65	3,03	2,35	11,68	2,82	0,89	2,14
Th/Sc	0,61	0,39	0,35	1,04	0,71	1,88	0,76	0,15	0,61
La/Co	1,88	1,42	1,47	2,65	2,22	12,13	2,29	1,15	1,85
Th/Co	0,48	0,32	0,32	0,91	0,67	1,95	0,61	0,20	0,53
Cr/Th	1047	20.63	1939	8 76	12.79	5 47	7 35	16 10	8 25

Tabela 1. Teores de elementos maiores (em %), elementos traço (em ppm) e ETR (em ppm) das amostras analisadas.

Amostra	A115	2009-0*	2009-35*	2009-36*	2009-59*	2009-60*	2009-61*	2009-62*
SiO ₂	64,04	61,94	66,91	64,11	66,45	68,39	63,15	62,96
TiO ₂	0,82	0,85	0,98	0,82	0,95	0,9	1,07	0,86
Al_2O_3	15,33	16,16	13,89	15,08	15,23	14,03	15,55	16,89
Fe ₂ O ₃ T	6,96	7,85	6,9	6,76	7,56	6,83	8,94	7,54
MnO	0,13	0,13	0,12	0,12	0,13	0,11	0,11	0,11
MgO	3,49	3,65	2,89	3,18	2,16	2,33	3,66	2,9
CaO	2,8	3,05	3,77	4,85	1,08	1,59	0,84	0,94
Na ₂ O	2,67	2,78	2,15	3,18	1,94	2,02	0,6	1,29
K ₂ O	2,53	2,53	1,51	1,2	3,17	2,67	2,77	4,06
P_2O_5	0,18	0,21	0,19	0,2	0,17	0,15	0,07	0,19
LOI	0,8	0,6	0,5	0,3	1	0,8	2,9	2
Total	99,78	99,75	99,82	99,81	99,81	99,8	99,7	99,74
Sc	17	20	18	18	18	16	22	20
V C	145	159	137	126	124	123	129	144
Cr	116,31	109,47	205,26	116,31	88,94	82,10	75,26	95,79
Co	19,8	21,4	16,2	17,8	20,4	19,8	19,5	59,2
NI G	60,2	69,7	46,8	41,4	45	45,4	25,6	/2,8
Cu	30,5	42,4	30,5	14	33,1	52,5 79	1,5	43,6
Zn	91	100	09 29 5	50 24 1	/9	/8	8/	100
KD Ca	83,4 5.2	//,8	38,5	54,1 1 2	131,1	108,7	07,9	14/,/
Cs S	5,2 104 7	4,4	2,2	1,5	/,5	0,3	3,1 115 0	/,1
Sr Do	194,7 514	222,2 520	205,5	303,0 410	115,8	120,7	115,8	131,7
Ба	28.0	20.2	200	419	20.2	200	20.2	712
1 7	20,9	29,2	20,7	29 156 0	30,3 222.4	20,0	29,5	55,2 100
Zľ	170,5	109,1 5 4	210,7	130,9	65	229,9	278,5	199
	4,0 9 /	5,4 0.7	0,7	4,4	0,5	12.4	/,0 19 5	5,9 12.4
IND To	0,4	9,7	9,1	7,5	13,9	15,4	10,5	15,4
la Dh	0,5	1.8	0,5	0,0	1,1	0,9	1,5	1
Th	5.0	73	6.8	6.2	13.5	10.6	+,1 15 1	12.1
	17	2	1.0	0,2	13,5	10,0	15,1	3.2
Ca Ca	18.4	18.8	1,9	15.9	2,5	18.2	$^{1,3}_{214}$	3,2 22 A
<u> </u>	32.5	20.2	23.4	22	36.5	31.5	68.3	33.0
La Ce	58.9	20,2 477	23, 4 49.6	47	50,5 78.6	72.4	138.1	73.6
Pr	7.6	5 88	6.28	611	8 83	7 79	16 22	8 35
Nd	30.2	23.9	27	25.6	33	31.5	62.7	33.5
Sm	6 31	51	516	5 18	6.23	5 83	10.32	63
Eu	1.37	1.28	1.28	1.35	1.35	1.26	2.45	1.32
Gd	6.16	4.79	4.98	5.15	5.47	5.1	8.26	5.63
Tb	0.96	0.9	0.84	0.86	0.95	0.93	1.24	0.97
Dv	5,37	5.39	4,66	4,83	5,28	5,16	5,78	5.7
Ho	1,02	1,1	0,99	0,95	1,06	1,04	1,08	1,13
Er	2,97	3,13	3,01	2,75	3,21	2,95	3	3,31
Tm	0,45	0,51	0,49	0,42	0,49	0,47	0,47	0,51
Yb	3,1	3,2	3,07	2,6	3,14	3,05	3,16	3,29
Lu	0,44	0,47	0,48	0,4	0,49	0,45	0,52	0,52
ΣΕΤR	157,35	123,55	131,24	125,2	184,6	169,43	321,6	178,03
ΣETRL	136,88	104,06	112,72	107,24	164,51	150,28	298,09	156,97
ΣΕΤRΡ	20,47	19,49	18,52	17,96	20,09	19,15	23,51	21,06
$La_{(N)}/Eu_{(N)}$	5,80	3,86	4,47	3,99	6,61	6,11	6,82	6,28
$Gd_{(N)}/Lu_{(N)}$	1,74	1,27	1,29	1,60	1,39	1,41	1,97	1,34
$La_{(N)}/Lu_{(N)}$	7,96	4,63	5,25	5,92	8,02	7,54	14,15	7,02
Eu*	0,66	0,78	0,76	0,79	0,69	0,69	0,79	0,66
La/Sc	1,91	1,01	1,30	1,22	2,03	1,97	3,10	1,69
Th/Sc	0,35	0,37	0,38	0,34	0,75	0,66	0,69	0,60
La/Co	1,64	0,94	1,44	1,24	1,79	1,59	3,50	0,57
Th/Co	0,30	0,34	0,42	0,35	0,66	0,54	0,77	0,20
Cr/Th	19,71	15,00	30,19	18,76	6,59	7,75	4,98	7,91
* - amostras	de Nava	rro et al. (2013)					

 Tabela 1. Teores de elementos maiores (em %), elementos traço (em ppm) e ETR (em ppm) das amostras analisadas (continuação)

	Sm (ppm)	Nd (ppm)	¹⁴³ Nd/ ¹⁴⁴ Nd	(±2SE)	¹⁴⁷ Nd/ ¹⁴⁴ Nd	εNd(0)	TDM
2014-5	6,4	32,0	0,512167	0,000005	0,1215	-9,2	1,39
2015-54	5,3	24,7	0,512350	0,000007	0,1296	-5,6	1,21
2015-55	7,0	31,5	0,512362	0,000007	0,1339	-5,4	1,25
2015-73	6,0	28,8	0,512227	0,000006	0,1261	-8,0	1,36
2015-109	8,1	39,1	0,511978	0,000005	0,13	-12,9	1,74
2015-115	6,2	27,5	0,512374	0,000008	0,14	-5,2	1,27

Tabela 2. Resultados das análises Sm/Nd em rocha total de rochas metassedimentares do Grupo Araxá.

Amostra	204Pb cps	²⁰⁶ Pb mV ¹	Th/U	206Pb/204Pb	15%	207Pb/235U	1s %	206Pb/238U	1s %	Rho	207Pb/206Pb	2s abs	206Pb/238U	2s abs	207Pb/235U	2s abs	% U-Pb disc ⁴
A54																	
049-Zir34	363	0,0171	0,037	4164	11,26	3,878	2,29	0,2367	1,28	0,56	1938	66	1369	31	1609	37	29,36
029-Zir19	835	0,0140	0,264	1024	3,93	5,052	5,76	0,2970	4,82	0,84	2005	109	1676	142	1828	95	16,40
058-Zir40	431	0,0161	0,125	3335	10,02	5,603	1,47	0,3169	1,36	0,92	2074	16	1775	42	1917	25	14,43
014-Zir07	1759	0,0148	0,569	749	14,57	6,096	3,24	0,3329	2,00	0,62	2135	87	1852	64	1990	56	13,25
059-Zir41	100	0,0097	0,376	6335	8,58	8,699	1,12	0,3940	0,91	0,81	2457	18	2142	33	2307	20	12,82
040-Zir28	50	0,0107	0,417	85866	33,52	5,627	16.0	0,3223	0,70	0,72	2052	20	1801	22	1920	17	12,23
028-Zir18	236	0,0196	0,153	6563	10,49	5,804	0,92	0,3287	0,62	0,67	2072	20	1832	20	1947	16	11,57
015-Zir08	82	8600'0	0,413	16699	39,89	5,602	1,72	0,3269	1,62	0,94	2019	16	1823	51	1916	29	9,67
056-Zir39N	58	0,0108	0,499	54991	46,35	2,323	1,27	0,2002	1,10	0,87	1296	20	1176	24	1219	18	9,22
005-Zir02N	21	0,0045	0,424	124567	39,16	6,731	0,81	0,3659	0,59	0,72	2144	15	2010	20	2077	14	6,24
006-Zir02B	19	0,0207	0,337	448764	24,53	6,492	0,78	0,3686	0,58	0,75	2067	13	2023	20	2045	14	2,14
057-Zir39B	25	0,0116	0,359	195477	26,92	2,522	0,77	0,2186	0,57	0,75	1285	14	1275	13	1278	11	0,78
027-Zir17	132	0,0095	0,412	5114	9,57	7,597	1,09	0,4128	0,86	0,79	2144	19	2228	32	2184	19	-3,89
046-Zir31	49	0,0033	0,701	43897	35,90	5,068	1,59	0,3368	1,32	0,83	1785	29	1871	43	1831	27	4,83
047-Zir32	49	0,0052	0,555	32174	41,85	1,060	0,95	0,1178	0,72	0,76	783	21	718	10	734	10	8,29
033-Zir21	78	0,0126	0,309	18399	29,05	1,210	1,44	0,1302	1,28	0,89	849	23	789	19	805	16	7,08
054-Zir37	18	0,0040	0,457	119615	19,97	1,034	1,28	0,1160	0,83	0,65	763	38	707	11	721	13	7,33
018-Zir11	382	0,1659	0,640	70440	22,77	0,969	3,10	0,1108	2,68	0,86	723	64	677	34	688	31	6,29
007-Zin03N	18	0,0098	0,133	243283	19,04	0,930	0,85	0,1080	0,67	0,79	691	16	661	8	668	00	4,35
004-Zir01	25	0,0168	0,173	387622	25,80	1,411	0,80	0,1470	0,57	0,71	916	17	\$\$4	6	893	6	3,43
008-Zin03B	22	0,0110	0,085	324218	26,80	0,921	0,89	0,1075	0,65	0,73	680	20	658	8	663	6	3,24
020-Zir13	12	0,0064	0,159	209903	16,82	0,973	0,86	0,1128	0,57	0,67	693	22	689	2	690	6	0,65
048-Zir33	16	0,0028	0,240	73397	23,59	1,139	1,28	0,1275	0,72	0,56	768	42	774	10	772	14	-0,80
017-Zir10	14	0,0043	0,406	124902	17,56	0,986	1,14	0,1146	0,83	0,72	688	30	669	11	697	11	-1,73
045-Zir30	41	0,0049	0,107	109147	24,99	1,229	1,28	0,1372	0,93	0,72	773	33	829	14	814	14	-7,24
030-Zir20	3513	0,0215	0,421	716	15,11	0,727	21,15	0,0297	21,10	1,00	2629	47	189	78	555	173	92,82
026-Zir16	968	0,0078	0,325	628	10,11	1,603	4,99	0,0652	3,69	0,74	2637	109	407	29	971	61	84,56
036-Zir24	8869	0,0351	0,115	260	3,45	1,833	2,38	0,0720	2,25	0,94	2696	23	448	19	1057	31	83,38
013-Zir06	4880	0,0139	0,375	179	1,48	1,345	2,86	0,0599	2,30	0,81	2484	55	375	17	865	33	84,90
044-Zir29	607	0,0015	0,581	148	2,59	2,614	3,70	0,1071	2,10	0,57	2626	66	656	26	1305	54	75,03
038-Zir26	5355	0,0121	0,750	144	2,97	1,907	2,51	0,0888	0,94	0,38	2409	17	549	10	1083	33	77,22
025-Zir15	4383	0,0149	0,347	215	2,37	1,432	2,89	0,0803	1,97	0,68	2090	72	498	19	902	34	76,18
053-Zir36	2081	0,0132	0,260	436	5,14	1,854	2,74	0,1059	1,68	0,61	2057	74	649	21	1065	36	68,46
037-Zir25	1132	0,0112	0,692	743	5,81	1,426	1,85	0,0984	1,25	0,67	1715	48	605	14	006	22	64,73
035-Zir23	276	0,0041	0,173	970	3,20	1,101	1,46	0,0976	1,25	0,86	1240	26	600	14	754	16	51,58
050-Zir35	269	0,0043	0,861	1063	4,51	1,279	2,93	0,1094	2,20	0,75	1312	73	699	28	837	33	48,98
016-Zir09	1801	0,0044	0,653	147	6,40	0,809	6,22	0,0785	1,50	0,24	1062	233	487	14	602	56	54,14
019-Zir12	851	0,0083	0,562	698	7,19	1,362	4,00	0,1158	1,36	0,34	1322	142	706	18	873	46	46,59
010-Zir05	197	0,0107	0,216	817	2,63	1,449	1,61	0,1230	1,29	0,80	1325	34	748	18	606	19	43,57
024-Zir14B	2371	0,0116	0,466	319	4,41	1,126	2,32	0,1052	0,93	0,40	1137	82	645	11	766	25	43,30
055-Zir38	193	0,0027	0,547	882	6,20	1,502	3,48	0,1299	2,68	0,77	1290	84	787	40	931	42	38,96
034-Zir22	427	0,0052	0,366	737	8,22	1,040	3,30	0,1013	1,72	0,52	1053	110	622	20	724	34	40,89
023-Zir14N	550	0,0095	0,410	1074	2,62	1,275	1,28	0,1181	0,78	0,61	1154	37	720	Ξ	835	15	37,65
039-Zir27	31	0,0016	0,334	53556	20,32	0,798	6,24	0,1071	1,42	0,23	371	262	656	18	595	55	-76,93
009-Zn04	862	0,0089	0,419	679	9,73	0,725	3,88	0,1073	1,15	0,30	146	169	657	14	553	33	-350,73

Max and balant 1 0001 0001 101 0001 0001 101 00011 0001 0001	1																																															
Max Max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<>		50,64	28,80	47,73	37,84	36,43	32,21	-24,25	0,51	-0,71	3,85	00'6	7,47	-0,56	-0,24	-1,26	-5,14	15,12	10.97	5,29	4,94	3,59	0,61	6,41	3,52	10,23	25,49	5,54	0,35	0,67	0,97	4,95	-6,71	-2,01	-6,93	-9,84	0,21	8,91	18,17	-3,81	12,66	13,17	-2,58	0,88	3,77	-5,59	2,87	16,89
No.2343 13 0001 066 14 501 101 011 101<		54	26	36	24	44	32	22	15	19	17	24	19	15	12	11	15	24	12	19	15	14	12	36	29	29	28	14	13	14	14	6	=	10	17	13	13	16	43	15	19	19	10	10	10	11	15	21
No.sec. No.sec. <t< td=""><td></td><td>2356</td><td>1547</td><td>864</td><td>1045</td><td>721</td><td>846</td><td>681</td><td>2056</td><td>1845</td><td>1848</td><td>1755</td><td>1697</td><td>1036</td><td>1000</td><td>986</td><td>973</td><td>1034</td><td>973</td><td>982</td><td>974</td><td>969</td><td>958</td><td>970</td><td>955</td><td>973</td><td>1034</td><td>936</td><td>912</td><td>902</td><td>886</td><td>829</td><td>792</td><td>197</td><td>617</td><td>171</td><td>789</td><td>807</td><td>812</td><td>748</td><td>774</td><td>775</td><td>738</td><td>741</td><td>739</td><td>722</td><td>729</td><td>756</td></t<>		2356	1547	864	1045	721	846	681	2056	1845	1848	1755	1697	1036	1000	986	973	1034	973	982	974	969	958	970	955	973	1034	936	912	902	886	829	792	197	617	171	789	807	812	748	774	775	738	741	739	722	729	756
Oriely (1) T-1 ODD1 ODD1 ODD1 T-1 ODD1 T-1 T-1 <tht-1< th=""> T-1 <</tht-1<>		50	22	37	21	42	35	14	23	29	21	40	23	19	13	13	17	26	12	20	16	15	12	34	25	31	35	17	14	16	17	6	13	10	20	16	16	16	50	17	21	21	10	10	11	12	16	24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1554	1326	694	878	635	750	713	2051	1851	1814	1680	1638	1037	1001	066	988	978	975	965	958	958	957	950	944	940	933	920	911	006	884	818	805	801	792	789	789	786	767	755	746	746	742	739	732	731	724	720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		74	46	50	46	66	55	82	16	21	24	10	27	20	23	17	26	44	25	36	28	25	26	84	73	58	28	18	26	21	20	18	18	18	24	17	15	40	67	24	35	40	20	22	19	17	34	33
Ans. Constraint T/4 O(012 O(002 <		3148	1863	1328	1412	866	1107	574	2061	1838	1887	1846	1770	1032	866	116	939	1153	996	1019	1008	994	962	1016	979	1048	1252	974	914	906	892	860	754	785	741	719	062	863	937	727	854	859	724	746	761	692	745	866
$\begin{array}{c ccccc} \mathbf{x}_{222} & \mathbf{y}_{12} & \mathbf{y}_{11} & \mathbf{y}_{122} & \mathbf{y}_{1$		0,60	0,56	06'0	0,72	0,81	0,86	0,48	0,74	0,80	0,65	0,95	0,69	0,85	0,73	0,78	0,79	0,77	0,69	0,76	0,75	0,75	0,68	0,67	0,61	0,76	0,93	0,86	0,75	0,83	0,86	0,70	0,83	0,76	06'0	06'0	0,91	0,71	06'0	0,87	0,85	0,82	0,77	0,75	0,80	0,86	0,79	06'0
0.272 0.0015 0.0015 0.0015 0.0015 0.0015 0.0015 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.00111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.0011111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.001111 0.0011111 0.0011111111111111		1,80	0,92	2,81	1,31	3,51	2,45	1,06	0,66	06'0	0,66	1,37	0,80	0,98	0,71	0,69	0,95	1,43	0,68	1,13	0,91	0,82	0,69	1,95	1,43	1,76	2,03	86'0	0,83	56'0	1,01	0,57	0,85	0,68	1,37	1,09	1,10	1,05	3,45	1,22	1,49	1,47	0,72	0,72	61.0	06'0	1,17	1,77
A.C. A.C. 013.Zm23 734 0.0012 0.603 154 5/0 9.181 3.01 013.Zm23 35 111 0.0024 0.360 1669 12.73 3.588 163 017.Zm26 56 0.0011 0.364 0.311 44,04 1034 2.31 017.Zm26 56 0.0011 0.364 0.311 44,04 1034 2.343 3.142 3.11 017.Zm26 556 0.0011 0.3657 0.325 10.343 3.658 1.342 1.14 015.Zm13 116 0.00142 0.343 2.88251 1.233 3.142 1.14 015.Zm13 116 0.00142 0.343 2.883 1.14 0.38 0.31 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 1.14 0.38 </td <td></td> <td>0,2726</td> <td>0,2284</td> <td>0,1137</td> <td>0,1459</td> <td>0,1035</td> <td>0,1234</td> <td>0,1170</td> <td>0,3745</td> <td>0,3326</td> <td>0,3250</td> <td>0,2976</td> <td>0,2892</td> <td>0,1746</td> <td>0,1680</td> <td>0,1660</td> <td>0,1656</td> <td>0,1639</td> <td>0,1634</td> <td>0,1615</td> <td>0,1603</td> <td>0,1602</td> <td>0,1600</td> <td>0,1589</td> <td>0,1578</td> <td>0,1570</td> <td>0,1558</td> <td>0,1535</td> <td>0,1518</td> <td>0,1498</td> <td>0,1469</td> <td>0,1352</td> <td>0,1330</td> <td>0,1323</td> <td>0,1308</td> <td>0,1302</td> <td>0,1301</td> <td>0,1297</td> <td>0,1263</td> <td>0,1243</td> <td>0,1227</td> <td>0,1226</td> <td>0,1221</td> <td>0,1215</td> <td>0,1203</td> <td>0,1201</td> <td>0,1188</td> <td>0,1181</td>		0,2726	0,2284	0,1137	0,1459	0,1035	0,1234	0,1170	0,3745	0,3326	0,3250	0,2976	0,2892	0,1746	0,1680	0,1660	0,1656	0,1639	0,1634	0,1615	0,1603	0,1602	0,1600	0,1589	0,1578	0,1570	0,1558	0,1535	0,1518	0,1498	0,1469	0,1352	0,1330	0,1323	0,1308	0,1302	0,1301	0,1297	0,1263	0,1243	0,1227	0,1226	0,1221	0,1215	0,1203	0,1201	0,1188	0,1181
0.52 0.502 7.24 0.0011 0.503 154 5.07 9.181 $0.37.227.25$ 14 0.00112 0.207 13273 3.285 3.588 $0.37.227.25$ 5.6 0.00110 0.366 9511 4.404 1.003 $0.37.227.26$ 5.6 0.0010 0.364 9511 4.404 1.031 $0.37.227.26$ 5.6 0.0010 0.364 9511 4.404 1.031 $0.37.227.21$ 0.3025 0.443 9.468 3.453 0.574 $0.38.227.21$ 1.7 0.0017 0.325 1.737 0.955 $0.38.227.241$ 1.6 0.0017 0.325 1.976 0.574 $0.35.227.241$ 1.6 0.0014 0.334 1.6837 4.631 $0.35.227.242$ 1.676 0.0014 0.357 0.576 1.607 $0.35.227.2241$ 1.637 0.0014 0.3738 1.6837 <td< td=""><td></td><td>3,01</td><td>1,63</td><td>3,12</td><td>1,81</td><td>4,31</td><td>2,84</td><td>2,22</td><td>0,88</td><td>1,13</td><td>1,02</td><td>1,44</td><td>1,16</td><td>1,15</td><td>0,98</td><td>0,89</td><td>1,21</td><td>1,84</td><td>0,98</td><td>1,49</td><td>1,20</td><td>1,10</td><td>1,01</td><td>2,89</td><td>2,34</td><td>2,32</td><td>2,19</td><td>1,13</td><td>1,12</td><td>1,14</td><td>1,18</td><td>0,81</td><td>1,02</td><td>0,89</td><td>1,52</td><td>1,22</td><td>1,22</td><td>1,48</td><td>3,84</td><td>1,39</td><td>1,75</td><td>1,80</td><td>0,93</td><td>0,96</td><td>0,98</td><td>1,05</td><td>1,47</td><td>1,97</td></td<>		3,01	1,63	3,12	1,81	4,31	2,84	2,22	0,88	1,13	1,02	1,44	1,16	1,15	0,98	0,89	1,21	1,84	0,98	1,49	1,20	1,10	1,01	2,89	2,34	2,32	2,19	1,13	1,12	1,14	1,18	0,81	1,02	0,89	1,52	1,22	1,22	1,48	3,84	1,39	1,75	1,80	0,93	0,96	0,98	1,05	1,47	1,97
\mathbf{x}_{12}		9,181	3,588	1,342	1,798	1,034	1,301	0,955	6,574	5,154	5,173	4,631	4,317	1,773	1,678	1,641	1,607	1,768	1,606	1,629	1,609	1,597	1,570	1,600	1,561	1,607	1,767	1,515	1,455	1,430	1,394	1,263	1,181	1,192	1,154	1,137	1,175	1,213	1,225	1,089	1,143	1,144	1,068	1,074	1,071	1,035	1,050	1,106
α_{10} α_{10} α_{10} 033.Zhu22 124 0,0012 0,603 154 033.Zhu22 140 0,0021 0,503 154 033.Zhu23 140 0,0021 0,503 132735 054.Zhu43 111 0,0021 0,563 132735 055.Zhu33 26 0,0010 0,465 50045 056.Zhu33 21 0,0012 0,443 9468 0717.Zhu12 13 0,0017 0,443 9468 0702.Zhu33 28 0,0017 0,443 9468 0717.Zhu33 13 0,0077 0,172 132354 038.Zhu57 29 0,0079 0,38 179835 038.Zhu57 13 0,0073 0,172 135706 038.Zhu57 13 0,0074 0,114 0,143 9458 038.Zhu57 13 0,0073 0,172 135706 016.Zhu11 12 0,0073 0,138 17579		5,07	32,85	12,73	4,69	44,04	19,79	34,55	22,39	16,58	22,91	3,62	23,90	29,94	14,70	18,31	58,06	11,48	23,32	48,24	17,55	25,37	21,84	22,62	25,83	23,04	11,78	36,26	24,60	27,76	34,27	14,78	32,31	19,84	7,40	41,50	20,68	20,05	17,82	10,19	30,07	6,67	43,35	19,64	40,05	12,76	15,54	4,55
a.v. a.v. 075-Zir53 724 0,0015 0,603 054-Zir12 56 0,00112 0,501 054-Zir12 51 0,00112 0,560 054-Zir13 211 0,0021 0,465 057-Zir12 211 0,0011 0,364 057-Zir12 211 0,0011 0,364 056-Zir13 211 0,0011 0,365 050-Zir12 73 0,0017 0,445 051-Zir13 196 0,0017 0,445 051-Zir13 196 0,0017 0,172 051-Zir10 112 0,0017 0,172 051-Zir10 112 0,0017 0,174 051-Zir10 112 0,0017 0,172 051-Zir11 112 0,0017 0,172 051-Zir11 112 0,0017 0,172 052-Zir11 112 0,0014 0,134 052-Zir11 112 0,0014 0,134 052-Zir17B		154	132735	1669	1041	9511	62045	9468	298251	10378	174797	12354	179893	89070	79086	135706	90755	3428	168899	16847	111609	53414	95932	17579	30973	25569	4208	83729	190059	124226	73252	235133	78848	201233	8198	47749	281222	57310	20299	11217	30139	5172	74498	122847	99515	29450	3254	4043
a.v.a 7.24 0,0015 075-Zir53 724 0,0012 054-Zir12 25 0,0011 054-Zir12 25 0,0011 054-Zir12 21 0,0011 054-Zir12 21 0,0011 054-Zir12 21 0,0011 057-Zir12 21 0,0011 057-Zir13 21 0,0014 057-Zir13 21 0,0014 057-Zir13 21 0,0014 057-Zir13 196 0,0014 057-Zir13 196 0,0014 057-Zir13 11 12 0,0014 057-Zir13 11 12 0,0014 057-Zir13 11 12 0,0014 057-Zir13 16 0,0013 0,0014 057-Zir13 11 12 0,0014 057-Zir14 11 12 0,0014 057-Zir13 16 0,0013 0,0014 057-Zir14 11 12 0,0014<		0,603	0,207	0,360	0,700	0,364	0,465	0,443	0,343	0,365	0,325	0,772	0,088	0,179	0,269	0,154	0,414	0,169	0,195	0,334	0,259	0,617	0,431	0,395	0,378	0,204	0,255	0,240	0,109	0,568	0,282	0,184	0,191	0,191	0,259	0,093	0,218	0,072	0,163	0,159	0,416	0,086	0,146	0,113	0,162	0,153	0,357	0,185
a.v.s a.v.s 075-Zir53 724 054-Zir44 111 054-Zir36 56 037-Zir25 51 054-Zir49 140 054-Zir36 56 037-Zir26 56 037-Zir21 21 056-Zir38 86 017-Zir12 21 037-Zir23 196 037-Zir23 23 018-Zir11 73 038-Zir27 29 031-Zir33 196 035-Zir10 112 010-Zir11 112 015-Zir11 113 015-Zir13 110 016-Zir11 112 016-Zir13 13 010-Zir07 13 010-Zir07 14 010-Zir07 13 030-Zir05 26 030-Zir05 26 030-Zir07 16 030-Zir07 16 030-Zir07 16 0301-Zir03 27 <td></td> <td>0,0015</td> <td>0,0112</td> <td>0,0024</td> <td>0,0021</td> <td>0,0010</td> <td>0,0021</td> <td>0,0035</td> <td>0,0142</td> <td>0,0080</td> <td>0,0067</td> <td>0,0367</td> <td>0,0079</td> <td>0,0073</td> <td>0,0026</td> <td>0,0041</td> <td>0,0142</td> <td>0,0070</td> <td>0,0079</td> <td>0,0030</td> <td>0,0034</td> <td>0,0028</td> <td>0,0044</td> <td>0,0008</td> <td>0,0014</td> <td>0,0013</td> <td>0,0161</td> <td>0,0086</td> <td>0,0087</td> <td>0,0057</td> <td>0,0054</td> <td>0,0070</td> <td>0,0216</td> <td>0,0081</td> <td>0,0118</td> <td>0,0150</td> <td>0,0113</td> <td>0,0019</td> <td>0,0201</td> <td>0,0157</td> <td>0,0025</td> <td>0,0109</td> <td>0,0168</td> <td>0,0048</td> <td>8600'0</td> <td>0,0449</td> <td>0,0050</td> <td>0,0103</td>		0,0015	0,0112	0,0024	0,0021	0,0010	0,0021	0,0035	0,0142	0,0080	0,0067	0,0367	0,0079	0,0073	0,0026	0,0041	0,0142	0,0070	0,0079	0,0030	0,0034	0,0028	0,0044	0,0008	0,0014	0,0013	0,0161	0,0086	0,0087	0,0057	0,0054	0,0070	0,0216	0,0081	0,0118	0,0150	0,0113	0,0019	0,0201	0,0157	0,0025	0,0109	0,0168	0,0048	8600'0	0,0449	0,0050	0,0103
A15 075-Zir53 054-Zir44 054-Zir44 054-Zir44 054-Zir42 056-Zir38 017-Zir26 017-Zir26 018-Zir12 071-Zir49 071-Zir49 071-Zir49 071-Zir49 071-Zir49 016-Zir11 062-Zir42 016-Zir42 016-Zir42 016-Zir42 016-Zir42 016-Zir60 008-Zir62 016-Zir42 016-Zir48 016-Zir48 016-Zir48 017-Zir48 017-Zir48 007-Zir48 014-Zir59 014-Zir59 014-Zir59 014-Zir58 014-Zir59 014-Zir59 014-Zir58 014-Zir59 014-Zir58 014-Zir58 014-Zir58 014-Zir58 014-Zir58 014-Zir58 014-Zir59 014-Zir58 014-Zir58 014-Zir59 014-Zir58 014-Zir59 014-Zir58 01		724	43	111	140	56	21	86	21	73	18	196	29	47	10	12	73	163	22	42	16	23	13	26	26	26	301	41	22	29	41	15	50	18	102	51	23	19	78	110	32	141	58	22	35	134	137	169
	A73	075-Zir53	033-Zir22	064-Zir44	054-Zir36	037-Zir26	017-Zir12	056-Zir38	018-Zir13	030-Zir21	071-Zir49	051-Zir33	038-Zir27	081-Zir57	015-Zir10	016-Zir11	062-Zir42	035-Zir24	009-Zin06	085-Zir61	005-Zir02	053-Zir35	010-Zir07	039-Zir28	072-Zir50	080-Zir56	025-Zir17B	024-Zir17N	040-Zir29	008-Zir05	083-Zir59	086-Zir62	020-Zir15	007-Zir04	023-Zir16	055-Zir37	070-Zir48	077-Zir55	028-Zir20N	029-Zir20B	057-Zir39	052-Zir34	074-Zir52	004-Zir01	084-Zir60	014-Zir09	067-Zir47	013-Zir08

2,50	23,06	-8,44	0,53	5,80	1,98	7,73	4,63	13,14	-1,09	9,14	18,80	27,59	22,10	20.00	05,02	16.70	-1,40	40,40	14,24	-53,54	4,24	8,10	-3,27	-0,49	1,40	8,19	9,59	-9,44	-3,46	4,71	-0,64	-3,69	7,46	2,36	-0,77	-0,58	2,87	-3,71	-0,59	-9,36	3,20	0,14	7,10	4,65	-1,89	-7,68	-8,99
14	26	14	14	10	21	10	18	10	6	16	12	14	19		48	777	93	20	34	40	28	22	26	28	17	33	23	22	26	20	24	18	22	26	22	15	18	39	14	15	14	35	55	46	26	16	19
720	768	698	688	684	676	671	661	672	641	630	632	607	0/0	100	108	8071	1962	C 501	2556	790	2410	2516	2026	1996	1875	1851	1854	1076	1070	1044	1029	1007	1021	989	979	943	941	901	847	824	835	826	824	789	792	776	767
17	30	14	13	10	26	= :	21	10	6	18	13	15	70		77	10	156	AC	26	34	47	37	44	33	24	55	38	31	29	23	24	22	25	27	23	14	23	42	15	17	13	35	53	44	24	17	22
716	714	711	687	675	673	629	654	649	643	617	602	563	C4C	100	000	200	1975	508	2342	871	2464	2400	2059	2000	1863	1777	1766	1108	1082	1059	1031	1019	966	982	982	944	933	911	848	844	828	826	807	798	796	161	784
19	31	37	43	20	26	18	33	19	19	26	21	21	5		104	Inc	102	145	35	126	33	22	23	43	21	27	15	23	48	37	54	26	41	58	46	33	24	85	29	30	36	87	143	127	70	41	36
734	928	655	691	716	687	714	686	747	636	619	742	777	00/	010	949	0017	1948	1444	2731	567	2364	2611	1994	1991	1889	1935	1954	1012	1045	1012	1025	982	1076	1006	974	939	960	878	843	772	855	827	869	762	782	735	719
0,91	0,94	0,74	0,67	0,80	0,94	0,83	0,89	0,80	0,80	06'0	0,87	0,91	060	200	C5'0	17.0	0,84	60'0	0,79	0,58	0,74	0,77	0,86	0,61	0,73	06'0	0,91	0,91	0,76	0,77	0,67	0,85	0,78	0,70	0,72	0,66	0,89	0,76	0,76	0,80	0,65	0,73	0,70	0,69	0,68	0,73	0,85
1,27	2,24	1,02	0,96	0,79	2,00	0,85	1,65	0,78	0,77	1,50	1,11	1,36	1,92		70,1	4,40	4,61	2,11	1,43	2,10	1,14	0,94	1,25	96'0	0,74	1,77	1,23	1,53	1,48	1,20	1,26	1,18	1,34	1,48	1,26	0,80	1,32	2,48	0,94	1,10	0,82	2,27	3,48	2,96	1,59	1,11	1,50
0,1174	0,1171	0,1166	0,1124	0,1103	0,1101	0,1076	0,1068	0,1060	0,1048	0,1004	0,0979	0,0912	0,0882		0,1244	1751,0	0,3584	0,1414	0,4380	0,1446	0,4655	0,4510	0,3763	0,3639	0,3350	0,3174	0,3152	0,1875	0,1827	0,1786	0,1735	0,1712	0,1670	0,1645	0,1645	0,1578	0,1557	0,1517	0,1406	0,1398	0,1370	0,1367	0,1334	0,1318	0,1315	0,1306	0,1293
1,40	2,39	1,39	1,44	0,98	2,12	1,02	1,86	86'0	0,96	1,66	1,27	1,50	2,15		4,59	10,28	5,46	000	1,82	3,65	1,54	1,21	1,47	1,59	1,01	1,96	1,35	1,67	1,94	1,55	1,87	1,39	1,72	2,10	1,74	1,20	1,49	3,26	1,24	1,37	1,25	3,12	4,98	4,28	2,35	1,52	1,76
1,033	1,130	0,988	0,969	0,962	0,947	0,937	0,918	0,938	0,881	0,860	0,864	0,818	0,/64		1,214	50477	5,902	1,112	11,395	1,176	9,731	10,917	6,358	6,138	5,341	5,190	5,209	1,885	1,868	1,796	1,756	1,697	1,733	1,649	1,623	1,531	1,526	1,429	1,303	1,252	1,277	1,256	1,250	1,174	1,183	1,148	1,129
32,21	19,39	41,05	21,23	9,15	22,98	40,11	50,78	69,65	82,77	40,76	34,96	66,21	60,51	20.00	00,12	0/11	30,01	07.07	12,91	31,72	19,94	22,17	10,57	42,61	23,82	54,40	45,05	26,50	10,86	20,42	17,09	23,17	20,80	14,84	20,27	17,42	69,55	18,52	29,92	37,14	17,98	14,55	14,78	19,01	17,86	16,72	28,45
114360	9229	24868	91112	6263	104972	52476	197574	38854	815263	87875	52338	34998	4/90	0000	7686	070	91141	6606	206441	17754	56412	99372	12892	226164	195771	61437	175509	213230	52931	78516	42621	307268	37576	37676	63962	9118	419564	24149	71617	81642	92346	23246	16525	14348	40078	54517	117891
0,247	0,161	0,185	0,523	0,337	0,307	0,309	0,045	0,445	0,377	0,579	0,253	0,213	0,240	1000	177'0	601.1	0,175	C1/'0	0,610	0,931	0,580	0,504	0,341	0,545	0,704	0,242	1,096	0,450	1,198	0,373	0,495	0,341	0,580	0,932	0,449	0,366	660'0	0,572	0,284	0,200	0,587	0,415	0,340	0,660	0,784	0,439	0,453
0,0094	0,0118	0,0042	0,0028	0,0078	0,0052	0,0073	0,0292	0,0063	0,0139	0,0109	0,0060	0,0115	0,0095	0 00 00	0,0040	06000	0,0064	0,0004	0,0049	6000'0	0,0023	0,0046	0,0223	0,0032	0,0038	0,0197	0,0226	0,0062	0,0012	0,0021	0,0011	0,0082	0,0019	0,0010	0,0022	0,0049	0,0061	0,0007	0,0043	0,0047	0,0028	0,0006	0,0004	0,0005	0,0012	0,0014	0,0069
43	125	44	12	89	29	37	44	51	56	41	45	85	CCI		871	1007	35	17	9	18	16	16	126	11	6	16	32	15	5	11	15	12	21	13	14	49	20	11	20	21	6	2	6	14	8	6	21
034-Zir23	073-Zir51	063-Zir43	076-Zir54	082-Zir58	036-Zir25	065-Zir45	061-Zir41	006-Zir03	066-Zir46	026-Zir18	027-Zir19	060-Zir40	019-Zu14	A109	00/-ZK4/	000-2K40	028-ZR20	CTN7-570	077-ZR55	029-ZR21	068-ZR48	039-ZR29	026-ZR18	020-ZR14	079-ZR57	033-ZR23	057-ZR39	018-ZR12	027-ZR19	061-ZR43	016-ZR10	034-ZR24	045-ZR32	049-ZR36	071-ZR51	048-ZR35	005-ZR02	010-ZR06	017-ZR11	004-ZR01	040-ZR30	080-ZR58	035-ZR25	075-ZR53	081-ZR59	069-ZR49	062-ZR44

3.65	4,48	3,99	1,71	9,91	-1,15	6,96	-10,74	21,62	21,69	-1,15	-3,20	28,34	3,35	-6,73	-1,66	-6,15	0,55	-0,02	3,15	4,52	6.25	66.0	0.50	3.39	11,78	11,21	30,18		-11,67	-2,21	-19,34	33,33	16,65	-10,37	-16,38	16,21	29,30	24,75	17,68	12,83	-3,12	-2,16	-9,80	-1,55	-3,27	4,41	-3,96
36	11	14	14	40	19	20	14	44	19	17	10	13	17	13	33	29	20	32	10	14	12	19	14	12	15	19	25		26	123	58	30	24	32	85	35	34	22	22	60	23	18	25	28	21	31	26
790	767	784	617	778	753	763	716	773	762	689	619	749	687	699	672	661	669	667	670	656	658	646	644	638	638	630	595		1012	1408	1449	850	1078	1405	1605	1279	1187	1220	1285	1207	1795	1533	1341	1369	1341	1316	1312
35	11	13	16	39	13	21	16	31	16	16	11	10	21	12	31	25	21	29	6	13	11	17	13	11	16	21	25		30	158	85	27	26	41	94	39	36	25	23	87	37	24	31	37	25	40	33
782	776	775	775	756	755	749	733	723	713	691	683	682	682	619	674	670	668	667	665	649	648	644	643	633	620	613	547		1047	1420	1553	749	1012	1460	1710	1194	1038	1093	1191	1147	1821	1547	1389	1377	1358	1338	1332
96	23	32	24	66	64	49	27	135	54	48	19	37	19	36	103	94	50	16	21	41	32	58	39	34	31	40	58		53	206	82	69	43	53	161	61	59	34	41	43	22	24	42	41	33	50	40
812	742	807	789	839	747	805	662	922	910	683	662	952	705	636	663	631	672	667	687	679	692	651	646	655	702	690	783		937	1390	1301	1124	1214	1322	1469	1425	1468	1452	1447	1316	1765	1514	1265	1356	1315	1281	1281
0.71	0,75	0,72	0,85	0,75	0,51	0,76	0,84	0,56	0,65	0,71	0,82	0,61	0,94	0,71	0,69	0,65	0,80	0,71	0,77	0,72	0,74	0.69	0.73	0.73	0,86	0,87	0,85	8	0,75	0,75	0,82	0,73	0,77	0,74	0,58	0,74	0,76	0,79	0,67	0,96	0,85	0,77	0,74	0,80	0,73	0,77	0,78
2.39	0,75	06'0	1,11	2,77	0,94	1,45	1,13	2,28	1,19	1,19	0,82	0,75	1,64	0,92	2,39	1,93	1,63	2,31	0,75	1,08	0.92	137	1.04	0.95	1,34	1,79	2,36		1,55	6,23	3,09	1,92	1,40	1,59	3,13	1,80	1,87	1,24	1,04	4,16	1,18	0,87	1,26	1,51	1,02	1,65	1,38
0.1290	0,1279	0,1278	0,1278	0,1245	0,1243	0,1231	0,1204	0,1186	0,1169	0,1132	0,1118	0,1117	0,1115	0,1111	0,1103	0,1096	0,1092	0,1090	0,1087	0,1059	0,1058	0.1051	0.1049	0.1032	0,1009	7660,0	0,0886	ç	0,1763	0,2465	0,2723	0,1233	0,1700	0,2541	0,3038	0,2035	0,1748	0,1847	0,2029	0,1947	0,3263	0,2711	0,2405	0,2381	0,2344	0,2307	0,2295
3.35	1,00	1,25	1,30	3,69	1,83	1,90	1,34	4,08	1,82	1,68	1,00	1,23	1,74	1,30	3,43	2,97	2,04	3,28	0,98	1,50	1.25	1.96	1.43	1.29	1,57	2,05	2,78		2,06	8,35	3,78	2,63	1,81	2,14	5,38	2,45	2,47	1,57	1,55	4,33	1,38	1,14	1,71	1,89	1,39	2,13	1,77
1.178	1,129	1,163	1,153	1,151	1,100	1,120	1,023	1,141	1,119	0,971	0,951	1,091	0,968	0,933	0,938	0,918	0,933	0,929	0,935	0,907	0.912	0.889	0.885	0.875	0,874	0,859	0,797	2	1,709	3,002	3,168	1,311	1,891	2,989	3,858	2,525	2,218	2,325	2,546	2,282	4,858	3,525	2,747	2,849	2,746	2,656	2,642
17.97	26,29	22,14	31,10	19,52	17,92	25,45	40,21	41,40	30,68	14,41	29,19	19,30	24,99	18,55	67,15	17,26	16,94	17,13	47,66	16,74	22,10	23.60	22,30	22.28	19,81	21,54	28,35		16,49	43,09	21,87	8,94	18,64	26,65	40,75	5,80	5,05	8,97	53,94	29,66	26,34	16,40	16,81	58,75	18,86	21,89	15,43
23220	139506	125866	192656	15556	164935	37975	411864	17377	82820	57701	485566	3491	210757	63370	47368	23675	59681	30536	464688	75736	52804	38840	95501	92666	55247	130208	20830		51049	11997	41450	1100	59480	66117	21930	62667	44568	231203	84243	36187	180752	170905	72172	98511	66358	45787	59730
0.479	0,206	0,186	0,368	0,366	0,166	0,661	0,388	0,971	0,430	0,178	0,454	1,410	0,355	0,799	0,975	0,582	0,725	0,300	0,337	0,542	0.235	0.179	0.371	0.520	0,612	0,570	0,173		0,439	0,602	0,529	0,204	0,540	0,242	0,321	0,385	0,233	0,869	0,276	0,500	0,131	0,330	0,603	0,455	0,340	0,486	0,513
0.0007	0,0070	0,0042	0,0056	0,0006	0,0052	0,0028	0,0124	0,0018	0,0074	0,0017	0,0199	0,0053	0,0135	0,0022	0,0008	0,0009	0,0021	0,0008	0,0121	0,0023	0,0031	0.0015	0.0033	0.0051	0,0029	0,0046	0,0011	2	0,0013	0,0002	0,0014	0,0012	0,0019	0,0033	0,0012	0,0010	0,0007	0,0047	0,0022	0,0025	0,0080	0,0060	0,0021	0,0030	0,0025	0,0018	0,0016
13	17	22	15	14	15	21	18	63	88	13	22	132	49	12	14	15	15	10	30	10	22	15	16	17	18	16	22		10	12	16	83	14	28	48	1	1	16	19	33	25	13	6	26	18	17	13
019-ZR13	060-ZR42	038-ZR28	013-ZR07	009-ZR05	082-ZR60	076-ZR54	065-ZR45	036-ZR26	008-ZR04	024-ZR16	058-ZR40	030-ZR22	056-ZR38	059-ZR41	044-ZR31	047-ZR34	050-ZR37	025-ZR17	007-ZR03B	078-ZR56	070-ZR50	037-ZR27	046-ZR33	072-ZR52	006-ZR03N	015-ZR09	014-ZR08	AllS	078-ZR57	075-ZR54	074-ZR53	065-ZR46	057-ZR40	047-ZR33	043-ZR29	038-ZR26	030-ZR20B	029-ZR20N	017-ZR11	009-ZR5B	018-ZR12	055-ZR38	063-ZR44	044-ZR30	010-ZR6	070-ZR51	046-ZR32

-2,02	0,12	-0,65	-1,38	-0,95	86'0	-2,22	0,30	4,98	-0,65	-0,60	0,51	3,31	-0,13	-0,26	-0,27	0,94	5,90	1,07	5,27	0,49	-0,28	3,42	6,54	5,45	8,92	7,89	-7,05	9,28	3,89	-19,40	-3,27	-11,68	-5,02	7,10	60'0	-2,15	-2,16	7,46	-11,99	20,50	1,12
27	37	29	25	30	47	22	21	39	21	29	16	22	32	23	22	37	26	22	23	21	29	22	22	26	19	22	26	43	24	44	18	12	17	43	33	15	20	15	34	20	16
1321	1320	1315	1305	1306	1312	1292	1304	1260	1279	1276	1279	1285	1266	1262	1258	1264	1279	1252	1269	1237	1215	1219	1189	1166	1181	1164	1034	1042	1006	864	847	826	823	831	798	772	763	728	689	746	693
29	42	35	28	36	72	29	24	33	23	34	21	28	39	26	27	33	29	25	25	23	37	30	30	25	22	25	28	42	24	42	18	13	15	56	37	15	21	14	34	17	14
1331	1319	1318	1311	1311	1307	1303	1303	1282	1282	1278	1276	1269	1266	1263	1259	1259	1250	1247	1244	1235	1216	1203	1161	1143	1142	1131	1056	1009	994	906	855	850	834	814	197	776	767	714	707	701	691
50	99	47	43	50	39	28	37	89	36	51	23	31	55	41	36	81	47	38	44	39	46	25	26	54	29	36	53	93	54	118	42	23	47	48	69	33	51	38	66	57	46
1305	1321	1310	1293	1298	1320	1275	1306	1222	1273	1271	1283	1312	1265	1260	1256	1271	1328	1261	1313	1241	1213	1246	1242	1209	1253	1227	986	1112	1034	758	828	761	794	877	262	760	751	772	631	882	669
0,67	0,70	0,75	0,71	0,75	0,94	0,84	0,70	0,52	0,71	0,74	0,79	0,81	0,76	0,72	0,77	0,56	0,71	0,73	0,67	0,69	0,81	0,88	0,88	0,65	0,79	0,77	0,73	0,69	0,69	0,65	0,72	0,77	0,63	0,95	0,82	0,77	0,75	0,73	0,73	0,67	0,68
1,21	1,76	1,46	1,20	1,53	3,07	1,25	1,02	1,43	1,01	1,49	0,89	1,20	1,71	1,15	1,20	1,43	1,30	1,12	1,09	1,04	1,69	1,36	1,42	1,22	1,06	1,21	1,45	2,27	1,31	2,50	1,12	0,81	0,96	3,65	2,45	1,04	1,43	1,05	2,52	1,29	1,06
0,2294	0,2270	0,2269	0,2256	0,2255	0,2248	0,2240	0,2239	0,2201	0,2200	0,2194	0,2189	0,2175	0,2171	0,2164	0,2157	0,2157	0,2140	0,2135	0,2128	0,2112	0,2077	0,2052	0,1973	0,1940	0,1937	0,1917	0,1780	0,1694	0,1666	0,1508	0,1418	0,1409	0,1381	0,1346	0,1317	0,1280	0,1264	0,1172	0,1159	0,1150	0,1132
1,80	2,50	1,95	1,69	2,04	3,25	1,49	1,45	2,74	1,42	2,02	1,13	1,49	2,26	1,60	1,55	2,57	1,83	1,53	1,62	1,50	2,09	1,55	1,61	1,88	1,34	1,57	1,99	3,30	1,91	3,82	1,55	1,04	1,52	3,85	2,98	1,36	1,91	1,44	3,46	1,94	1,56
2,674	2,668	2,652	2,614	2,619	2,642	2,571	2,612	2,458	2,523	2,513	2,523	2,545	2,479	2,465	2,452	2,471	2,524	2,432	2,491	2,383	2,310	2,321	2,227	2,152	2,200	2,148	1,768	1,791	1,694	1,342	1,303	1,255	1,250	1,267	1,193	1,139	1,121	1,049	0,971	1,085	0,979
23,16	14,39	3,56	14,58	24,78	36,08	3,53	15,58	5,40	4,72	20,31	3,02	19,67	17,77	32,28	19,00	26,54	4,80	34,79	14,99	10,43	6,23	38,03	35,14	19,97	21,21	23,54	22,59	17,43	3,51	67,52	18,25	3,82	21,37	13,03	22,15	14,89	26,98	4,00	14,74	20,58	4,37
35013	36112	108862	80768	73080	7081	129839	68971	112830	114863	34450	264028	58835	52046	95296	142351	25473	89476	95191	47366	108907	147380	97282	293057	45983	53084	71350	54621	19823	132055	60839	67599	563592	74071	298886	29817	101952	74767	238468	29356	39533	183774
0,468	0,421	0,427	0,576	0,389	0,604	0,352	0,451	0,435	0,424	0,554	0,608	0,409	0,610	0,401	0,397	0,406	0,420	0,532	0,469	0,234	0,500	0,368	0,434	0,562	0,493	0,414	3,994	0,342	0,448	0,320	0,616	0,205	0,119	0,073	0,436	0,271	0,258	0,515	0,299	1,305	0,064
0,0014	0,0010	0,0017	0,0022	0,0012	0,0052	0,0021	0,0020	0,0018	0,0018	0,0012	0,0042	0,0026	0,0018	0,0031	0,0041	0,0013	0,0014	0,0020	0,0014	0,0017	0,0024	0,0039	0,0050	0,0018	0,0026	0,0024	0,0023	0,0006	0,0021	0,0005	0,0022	0600'0	0,0027	0,0074	0,0012	0,0030	0,0038	0,0038	6000'0	0,0016	0,0029
22	8	1	12	9	93	1	11	1	1	18	1	14	14	27	12	35	1	13	11	1	1	18	12	15	18	16	32	14	1	12	12	1	16	11	18	14	23	1	6	23	1
066-ZR47	079-ZR58	039-ZR27	049-ZR35	058-ZR41	004-ZR1	037-ZR25	064-ZR45	027-ZR19N	023-ZR15	068-ZR49	026-ZR18	005-ZR2	069-ZR50	020-ZR14	016-ZR10	060-ZR43	036-ZR24	053-ZR36	077-ZR56	028-ZR19B	033-ZR21	006-ZR3	008-ZR5N	073-ZR52	007-ZR4	019-ZR13	059-ZR42	056-ZR39	024-ZR16	076-ZR55	045-ZR31	034-ZR22	014-ZR8	035-ZR23	015-ZR9	013-ZR7	067-ZR48	025-ZR17	054-ZR37	048-ZR34	040-ZR28