

ISSN: 1980-900X (online)

PALEOGEOGRAFIA DA SEÇÃO CRETÁCEA NEOAPTIANA DO NORDESTE DA BACIA DE SERGIPE-ALAGOAS, BRASIL

CRETACEOUS LATE APTIAN PALEOGEOGRAPHY FROM NORTHEASTERN SERGIPE-ALAGOAS BASIN, BRAZIL

Wagner SOUZA-LIMA¹, Cristina PIERINI², Cristiano Mundstock FISCHER², Bráulio Oliveira SILVA²

 ¹Fundação Paleontológica PHOENIX. Rua Geraldo Menezes de Carvalho, 218 – Suíssa. Aracaju – SE. E-mail: wagner@phoenix.org.br
 ²PETROBRAS/Aracaju. Rua Acre, 2504 - América, Aracaju - SE. E-mails: crispierini@petrobras.com.br; crisfischer@petrobras.com.br; braulio@petrobras.com.br

> Introdução Material e Métodos Inferências Paleogeográficas Sequência K40 (Eo – Neoaptiano) Sequência K50 (Neoaptiano) Conclusões Agradecimentos Referências

RESUMO - A seção neoaptiana da bacia de Sergipe-Alagoas engloba os registros geológicos iniciais das transgressões marinhas efetivamente responsáveis pela implantação do Oceano Atlântico Sul ao final do Cretáceo. Melhor conhecida na sua porção sul (subbacia de Sergipe), o comportamento destas transgressões é ainda pouco compreendido na porção nordeste da bacia (sub-bacia de Alagoas). Com base na análise integrada de dados bioestratigráficos e faciológicos de poços e afloramentos, este estudo apresenta mapas litoestratigráficos e reconstruções paleogeográficas para dois dos intervalos de tempo. Ambos marcam a transição entre sequências deposicionais essencialmente continentais (K40; Eo – Neoaptiano) para aqueles cujos sistemas deposicionais foram predominantemente marinhos (K50; Neoaptiano). Embora separadas por uma importante discordância, denominada pré-Neoalagoas, as reconstruções permitiram observar que os processos deposicionais foram, de certo modo, semelhantes para as unidades estratigráficas abaixo e acima desta discordância. As diferenças evidenciam-se pelo avanço transgressivo durante a deposição da sequência K50, o qual teria se aproveitado dos mesmos compartimentos tectônicos mais subsidentes da sequência K40. Coincidentemente, estes mesmos compartimentos seriam novamente alvo de transgressões mais tardias, no Cenomaniano e entre o Daniano e o Ypresiano.

Palavras-chave: Litoestratigrafia. Formação Maceió. Formação Muribeca. Formação Poção. Atlântico Sul.

ABSTRACT - The late Aptian section of the Sergipe-Alagoas Basin includes the initial marine transgressions records effectively responsible for the South Atlantic Ocean implantation by the end of the Cretaceous. Better known in its southern portion (Sergipe Subbasin), the behavior of these transgressions is still poorly understood in the northeast portion of the basin (Alagoas Sub-basin). Based on the integrated analysis of biostratigraphic and faciological data from wells and outcrops, this study presents lithostratigraphic maps and paleogeographic reconstructions for two time intervals. They both mark the transition between essentially continental depositional sequences (K40; Early–Late Aptian) for those whose characteristics depositional systems were predominantly marine (K50; Late Aptian). Although separated by an important unconformity, called pre-Neoalagoas, the reconstructions permitted to observe that the depositional processes were, in a way, much similar for the stratigraphic units below and above this unconformity. The differences are evidenced by the transgressive K50 behavior, which would have taken advantage of the same more subsided compartments of the K40 sequence. Coincidentally, these same compartments would again be the target of later transgressions, in the Cenomanian and between the Danian and Ypresian.

Keywords: Lithostratigraphy. Maceió Formation. Muribeca Formation. Poção Formation. South Atlantic.

INTRODUÇÃO

A bacia de Sergipe-Alagoas, em sua maior parte situada na região costeira dos estados homônimos, destaca-se no cenário geológico por apresentar a mais completa seção aflorante representativa de todos os estágios tectônicos característicos de bacias de margem passiva em ambas as margens do Atlântico Sul (Souza-Lima et al., 2002). Também afloram significativos registros das sinéclises paleozoicas que ocuparam grandes extensões da América do Sul. Além das seções aflorantes, desde os primeiros estudos em subsuperfície, ainda na década de 1920, um grande número de poços foi perfurado na região terrestre e marítima desta bacia, o que aumentou consideravelmente o conjunto de dados disponíveis para estudos.

Como qualquer outra bacia sedimentar do planeta, a bacia de Sergipe-Alagoas passou por uma longa história de definição litoestratigráfica (Souza-Lima, 2006).

Embora a Formação Muribeca tenha sido definida em meados do séc. 20 (Bender, 1957), sua presença na sub-bacia de Alagoas, em particular na sua porção emersa, sempre foi pouco entendida. Nos resultados da revisão estratigráfica da bacia apresentados em um relatório restrito (Palagi, 1968), condensado e publicado por Schaller (1970), ficou bem clara a sua ocorrência na bacia, embora em uma concepção litoestratigráfica ligeiramente distinta da atual (Campos Neto et al., 2007), pois a Formação Muribeca incluía o que é hoje reconhecida como Formação Maceió (Figueiredo, 1978). Contudo, por uma interpretação equivocada, na nova carta estratigráfica da bacia publicada no final do séc. 20, o termo Muribeca ficou de aplicação limitado ao "bloco alto da Linha de Charneira Alagoas da bacia de Sergipe" (Feijó, 1995, p. 151), e todas as seções antes atribuídas à Formação Muribeca na região alagoana foram indistintamente incorporadas à Formação Maceió.

Recentemente, Souza-Lima et al. (2019), com base em critérios estratigráficos, bioestratigráficos, sísmicos e tectônicos, revisaram a litoestratigrafia correspondente ao intervalo do Aptiano superior-Albiano inferior no norte da bacia de Sergipe-Alagoas, estabelecendo novos critérios para a caracterização e distinção das seções sedimentares associadas às formações Maceió, Poção e Muribeca. Neste mesmo estudo, apresentaram uma completa revisão acerca da evolução do conhecimento litoestratigráfico desta seção, de modo que a mesma não será aqui abordada. Dentre os resultados do estudo de Souza-Lima et al. (2019), concluiu-se que os clássicos afloramentos de Japaratinga, Barreiras do Boqueirão e Morro do Camaragibe, na região costeira do norte do Estado de Alagoas, até então atribuídos à Formação Maceió, representariam o Membro Carmópolis da

Para este estudo foram utilizados dados litofaciológicos, paleontológicos e bioestratigráficos de cerca de 40 afloramentos e 80 poços perfurados na região terrestre e marítima da porção nordeste da sub-bacia de Alagoas (Figura 1).

Com base em dados bioestratigráficos e litoestratigráficos, foram discriminados, para cada um dos poços selecionados, intervalos atribuídos à seção eo – neoaptiana (abrangência temporal da amplitude de parte superior da zona de palinomorfos P-230 à zona P-260) e à seção neoaptiana (abrangência temporal da amplitude Formação Muribeca.

As seções sedimentares neoaptianas – eoalbianas destacam-se, em particular, por conter os registros das mais intensas mudanças ocorridas no Gondwana ao longo da sua história geológica, mudanças que culminaram com a plena separação entre as placas sul-americana e africana, e com a implantação do Oceano Atlântico Sul. Estas rochas contêm evidências geológicas, climáticas e biológicas, dentre outras, que permitem o entendimento dos momentos que antecederam a implantação do proto-oceano Atlântico e aqueles do início do estabelecimento de um corpo marinho permanente.

O objetivo deste novo estudo é apresentar reconstruções litoestratigráficas e paleogeográficas a partir da análise integrada de dados bioestratigráficos e faciológicos dos poços e dos afloramentos da porção nordeste da sub-bacia de Alagoas para o intervalo Aptiano superior-Albiano inferior, de modo a permitir reconstruir, ao menos em parte, a história deposicional desta região. Reconstrói-se, deste modo, um cenário organizado cronologicamente onde se pode contemplar os principais eventos deposicionais que ocorreram nesta região da bacia. Destes, um dos mais significativos do ponto de vista paleogeográfico é a definição temporal e do alcance geográfico das diversas incursões marinhas que teriam ocorrido na sub-bacia de Alagoas ao longo de sua evolução, com ênfase no intervalo aqui estudado. A diversidade e abundância de novos dados gerados com o progressivo conhecimento geológico desta área permitem a construção de mapas paleogeográficos em grau de detalhe muito superior, visto que os existentes até o momento são mapas de abrangência regional a continental (Ojeda, 1982; Dias, 1991; Bradley & Fernandez, 1992; Caixeta et al., 2015).

MATERIAL E MÉTODOS

das zonas P-270 e parte basal da P-280), seguindo o zoneamento apresentado na figura 2. Intervalos sem dados bioestratigráficos foram discriminados a partir de correlações estratigráficas com outros intervalos de poços datados (Figura 3).

Os intervalos selecionados dos poços foram submetidos a análise litofaciológica utilizando o módulo "Litofácies" do *software* SIGEO (PETROBRAS). Para cada intervalo em estudo foram analisados os percentuais de siliciclásticos-carbonatos-evaporitos e arenitos-pelitos-

Figura 1 – Mapa de localização dos poços e afloramentos utilizados para a interpretação paleogeográfica da região nordeste da sub-bacia de Alagoas, com localização da seção estratigráfica da Figura 3. Adaptado de Souza-Lima et al. (2002).

CRONOESTRATIGRAFIA			SUPERZONA		ZONA	
CRETÁCEO	ALBIANO	NEO	Elateroplicites africaensis ¹	P-350 (pars)	Elaterosporites protensus ¹	P-360
					Classopolis echinatus ²	P-355
		MESO	Stellatopollis barghoorni ³	P-300	Steevesipollenites alatiformis ¹	P-330
		EO			Elateropollenites jardinei ¹	P-320
	APTIANO (pars)	NEO	Exesipollenites tumulus¹	P-200 (pars)	Complicatisaccus cearensis ^₄	P-280
					Sergipea variverrucata1	P-270
					Inaperturopollenites turbatus ¹	P-260
					Inaperturopollenites curvimuratus1	P-240
		EO			Tucanopollis crisopolensis ¹	P-230

Figura 2 - Zoneamento bioestratigráfico com base em palinomorfos para a porção superior do Aptiano e para o Albiano (adaptado de Regali et al., 1974, 1975¹; Regali, 1995²; Regali & Gonzaga, 1985³; e Regali, 1987⁴).

carbonatos das unidades litoestratigráficas envolvidas (formações Maceió, Poção e Muribeca), através de diagramas ternários padrão (12 campos), misto (14 campos) e duplo-ternário (25 campos). Desta análise, foram gerados mapas de classes para cada um dos diagramas ternários, mapas de isólitas de siliciclásticos, carbonatos, evaporitos, arenitos e pelitos, além de seus valores absolutos e normalizados (Figura 4). Alguns resultados foram descartados devido à ausência de algumas seções em áreas mais amplas. Isto ocorreu particularmente para a Formação Poção.

Figura 3 – Exemplo de correlação litoestratigráfica entre os poços utilizados no presente estudo, suportada por dados bioestratigráficos e, eventualmente, sísmicos. *Datum* definido na superfície da discordância pré-Neoalagoas; dados de poços conforme Florêncio (2001) e Martins (2016); distância entre os poços constante. Localização da seção na figura 1.

Figura 4 – Exemplo de discriminação de dados obtidos após análise faciológica de intervalos selecionados em poços perfurados na porção norte da sub-bacia de Alagoas. A) Diagrama ternário de litofácies para a Formação Muribeca; B) Mapa de classes de litofácies para a Formação Muribeca gerado de acordo com o diagrama ternário.

Dados provenientes da análise faciológica foram integrados aos dados dos afloramentos selecionados, incluindo dados faciológicos, bioestratigráficos e medidas de paleocorrentes, acrescidos de controles pela interpretação de seções sísmicas (Souza-Lima et al., 2019). Para cada ponto do mapa representado por poço ou afloramento, foram utilizadas, para efeito de construção dos mapas, as litofácies predominantes

A compartimentação tectônica que controlou a deposição sedimentar da fase rift da bacia de Sergipe-Alagoas foi herdada, essencialmente, daquela do embasamento. Do ponto de vista estrutural, a bacia é constituída por meiosgrabens limitados por falhas transcorrentes/ transferentes W-E/NW-SE, e outras distensivas, de direção NE-SW, que conferem um padrão en échelon ao arcabouço estrutural (Lana, 1990). Estas falhas foram reativadas especialmente durante a fase rift, e tiveram um controle fundamental na evolução paleogeográfica da bacia. As falhas normais, mais significativas e com os maiores rejeitos, estiveram relacionadas à definição das duas principais linhas de charneira da bacia. Uma delas corresponde ao conjunto de falhas que define a borda atual da bacia, englobando, em geral, a geração mais antiga. O segundo conjunto define a chamada "linha de charneira Alagoas", e teve um papel preponderante no controle das ingressões marinhas que culminariam com a implantação do Oceano Atlântico Sul. Estes dois conjuntos convergem aproximadamente ao norte da subou aquelas indicativas de eventos geológicos significativos (p. ex., deposição evaporítica).

A integração dos dados culminou com a construção de mapas litoestratigráficos e paleogeográficos para os intervalos P-230 (*pars*)/P-260 e P-270/P-280 (*pars*). Uma maior discriminação temporal não foi possível devido à precária resolução bioestratigráfica das seções predominantemente siliciclásticas deste intervalo.

INFERÊNCIAS PALEOGEOGRÁFICAS

bacia de Alagoas, definindo um ponto de rotação comum nas imediações do Alto de Jundiá (Figura 5). A movimentação ao longo destas falhas foi auxiliada por falhas de menor rejeito, sintéticas, e algumas outras antitéticas. A cinemática deste conjunto manteve-se controlada pelas falhas maiores e de maior rejeito (as charneiras), com caráter rotacional, gerando depocentros adjacentes aos planos de falha em seus blocos mais baixos, com progressiva diminuição do abatimento (e consequente diminuição da geração de espaço de acomodação sedimentar) para as áreas mais internas do rift, onde se situavam as áreas de flexura (hinge lines). Assim, foram gerados internamente ao rift principal uma série de altos e baixos estruturais assimétricos, homoclinais, com eventual exposição de alguns destes altos e sua erosão parcial, bem representada pelo evento gerador da mais significativa discordância encontrada no intervalo do presente estudo, a "pré-Neoalagoas" (Bacellar & Costa, 1993). Esta discordância separa a seção aqui estudada em duas grandes sequências deposicionais: a sequência K40, que abrange a amplitude das zonas

Figura 5 – Mapa litoestratigráfico da região nordeste da sub-bacia de Alagoas para o intervalo compreendido pelas palinozonas P-230/P-260 (exceto Formação Ponta Verde), com ênfase para as bacias evaporíticas do Baixo de Fazenda Guindaste e da região de Maceió, onde acumularam-se as maiores espessuras dos evaporitos Paripueira, os quais fazem parte da Formação Maceió (adaptado de Souza-Lima, 2008). A proveniência das ingressões marinhas que deram origem a esses depósitos é ainda desconhecida. Durante as fases não marinhas, nas áreas anteriormente ocupadas pelas bacias evaporíticas, ocorreria a deposição dos folhelhos betuminosos do Membro Tabuleiro dos Martins (Formação Maceió).

de palinomorfos P-230 a P-260 (Eo – Neoaptiano), e a sequência K50, que abrange a amplitude das zonas de palinomorfos P-270 a P-280A (Neoaptiano).

Sequência K40 (Eo – Neoaptiano)

A sedimentação da sequência K40 ocorreu no âmbito temporal da extensão das biozonas P-230 a P-260. Na presente análise exclui-se deste estudo a seção mais basal representada pelos sedimentos inseridos na Formação Ponta Verde (sensu Feijó, 1995). Esta sequência foi marcada por uma série de eventos transgressivos, cujos registros estão bem representados pelos evaporitos Paripueira, inseridos na Formação Maceió, os quais foram detalhados por Souza-Lima (2008). Na área em estudo, a deposição desses evaporitos, constituídos essencialmente por halita, ocorreu no Baixo de Fazenda Guindaste e na "bacia evaporítica de Maceió" (Florêncio, 2001), provavelmente controlada pelos degraus da falha de Tabuleiro dos Martins (Figura 5). A proveniência das ingressões marinhas que deram origem a esses depósitos é ainda controversa, estando esta discussão fora do enfoque do presente estudo. Apesar das incursões marinhas, estas foram eventuais, de modo que esta unidade tem um caráter deposicional predominantemente continental, destacando-se as porções lacustres possivelmente mais anóxicas onde teria ocorrido a deposição dos folhelhos betuminosos do Membro Tabuleiro dos Martins (Figura 6). Controlado pelas falhas de borda da bacia, e mesmo por falhas transferentes, conglomerados imaturos da Formação Poção, sob a forma de leques aluviais, interdigitavam-se com esses depósitos. A fase final da seção P-260 foi marcada por aumento significativo do tectonismo, que teria causado o basculamento das seções sedimentares em direção à borda da bacia, seguida por soerguimento significativo e erosão, gerando o que se denominou de "discordância pré-Neoalagoas".

A região ao sul da falha leste de São Miguel aparentemente manteve-se soerguida ao longo de todo o tempo da deposição da seção P-230 a P-260, em continuidade aos altos de Penedo e Palmeira Alta, que limitam a sub-bacia de Alagoas com a de Sergipe. Altos isolados menores, situados a sudoeste de Maceió, provavelmente controlaram o aporte marinho e

Figura 6 – Mapa paleogeográfico da região nordeste da sub-bacia de Alagoas para o intervalo compreendido pela amplitude temporal das palinozonas P-230 (*pars*) e P-260 (Eo – Neoaptiano). Nesta reconstrução contempla-se um intervalo de deposição essencialmente continental. Nos sistemas predominantemente lacustres poderia ocorrer deposição evaporítica ao final dos eventos marinhos transgressivos (não ilustrada).

sua restrição para o Baixo de Varrela, sendo possível que tenha havido a deposição de evaporitos neste compartimento durante este intervalo.

Mais internamente à bacia, controlada pelos blocos rotacionados das falhas sintéticas ou pelas falhas antitéticas, sob a forma de meios-grabens ou mesmo grabens, drenagens axiais de caráter conduziam mais permanente sedimentos oriundos do Alto de Jundiá e da Rampa de Maragogi para o sul, eventualmente desaguando em sistemas lacustres nos baixos regionais (Figura 6). Drenagens intermitentes provenientes da borda da bacia ou da margem flexural afluíam as drenagens axiais, porém com para contribuição sedimentar distinta: sedimentos mal selecionados, num amplo espectro granulométrico, conduzidos por leques aluvias nas bordas falhadas situadas a oeste, e sistemas fluviais retrabalhando sedimentos dos blocos soerguidos pela rotação interna dos blocos do rift, a leste. A interpretação desta rede de drenagem baseia-se principalmente em evidências de paleocorrentes e das fácies sedimentares ocorrentes em sistemas deposicionais análogos que ocorrem na seção imediatamente acima, abrangendo o intervalo de deposição da seção P-270/P-280 e que serão apresentadas adiante, já que a deposição das duas sequências teve um caráter, de certo modo, recorrente.

Sequência K50 (Neoaptiano)

Sobre a discordância pré-neo-Alagoas ocorreu a deposição dos legues aluviais e subaguosos, retrabalhamento fluvial do Membro com Carmópolis (Formação Muribeca; Figura 7). De modo semelhante ao que aconteceu para a seção anterior, a deposição desta seção parece ter estado, em parte, controlada pelas falhas de borda e falhas sintéticas associadas. À semelhança com o que ocorreu na sub-bacia de Sergipe neste mesmo intervalo, sucedeu-se uma série de ingressões marinhas. Estas ingressões, representadas pelo Membro Ibura (Formação Muribeca), teriam ocorrido, preferencialmente, no âmbito dos baixos de Varrela e Riacho Doce, bem como na bacia evaporítica de Maceió (Figura 7). Conforme já citado, nesta última houve também a deposição dos evaporitos Paripueira na sequência anterior. Nesta porção da bacia, a sequência evaporítica do Membro Ibura está representada essencialmente por anidrita/gipsita e dolomita. A ocorrência de halita constatada por um poço perfurado nos degraus do Baixo de Varrela parece estar associada a intervalos

Figura 7 – Mapa faciológico simplificado com base em poços e afloramentos para a Formação Muribeca no norte de Alagoas. As bacias evaporíticas estão localizadas na região de Maceió e nos baixos de Varrela e Riacho Doce, em parte coincidentes com as áreas da deposição evaporítica da seção anterior. Neste último desenvolveu-se ainda uma plataforma carbonática subordinada. A deposição das litofácies mais grossas do Membro Carmópolis ocorreu principalmente nos degraus dos baixos de Fazenda Guindaste e Riacho Doce, no Baixo de Fernão Velho, sendo a Rampa de Maragogi preenchida pelas litofácies de granulação mais fina.

coetâneos. Uma plataforma carbonática localizada desenvolveu-se no Baixo de Riacho Doce, na área da bacia evaporítica de Maceió, e em parte do bloco alto da falha de Tabuleiro dos Martins, na região de Massagueira, imediatamente ao sul de Maceió.

A deposição do Membro Carmópolis ocorreu principalmente nos degraus dos baixos de Fazenda Guindaste e Riacho Doce, no Baixo de Fernão Velho e na Rampa de Maragogi. Neste último compartimento estrutural são encontrados os principais afloramentos desta unidade no litoral alagoano (Souza-Lima et al., 2019). Espessuras significativas ocorrem no degrau de Porto Calvo e a leste de Flexeiras.

Assim como no intervalo anterior, é possível que algumas áreas tenham permanecido altas, fora do alcance destes eventos transgressivos, como, p. ex., o Baixo de Sinimbu, a Rampa de Jequiá, a Plataforma de São Miguel, parte do Alto de Tabuleiro dos Martins e o Baixo de Pilar, onde aparentemente denudavam-se as seções soerguidas das formações Maceió, Poção e Coqueiro Seco (área hachurada, Figura 7).

Estudos de paleocorrentes nas seções da Formação Muribeca aflorantes no norte de Alagoas permitiram discriminar três direções de transporte, integradas a litofácies distintas. A direção predominante é de NE para SW, estando relacionada a estratificações tangenciais associadas a sistemas fluviais de porte médio a grande. O segundo conjunto, obtido a partir de estruturas do tipo *climbing ripples*, mostra uma maior variação, entre E e SW, estando relacionado às porções distais de depósitos turbidíticos e pródeltaicos. Um terceiro conjunto marca as feições de preenchimentos de canais de alto poder erosivo por fluxos de alta densidade e aqueles preenchidos por depósitos turbidíticos, com sentido predominante E-SE.

As paleocorrentes tangenciais de NW para SW registram uma rede de drenagens predominantemente axial, favorecida pelo mergulho regional dos diversos compartimentos estruturais para o sul.

Este sistema frequentemente retrabalhava os leques aluviais oriundos da borda da bacia, marcados pelos canais de sentido preferencial E-SE. É provável que fluxos sedimentares mais volumosos vindos da borda obliterassem completamente estas drenagens, criando lagos temporários, por vezes profundos, onde a sedimentação de caráter inicialmente subaéreo evoluía para uma sedimentação gravitacional subaquosa, gerando depósitos turbidíticos semelhantes aos que hoje se observa nos clássicos afloramentos do Morro do Camaragibe, atribuídos à Formação Muribeca por Souza-Lima et al. (2019).

O sentido dos fluxos sedimentares que originaram estes depósitos fica evidente pela avaliação das feições em *climbing ripples*, mostrando que o sentido predominante da sedimentação foi para E e SW. A separação entre os contextos lacustres e marinhos ao longo desta grande "rampa" regional esteve provavelmente associada a altos transpressivos relacionados a movimentações das falhas de deslocamento principal horizontal, bem como à presença de extensivos lobos aluviais (Figura 8).

Figura 8 – Mapa paleogeográfico da região nordeste da sub-bacia de Alagoas para o intervalo compreendido pela amplitude das palinozonas P-270 e P-280 (*pars*; Neoaptiano). Nesta reconstrução contempla-se um intervalo de deposição parcialmente restritivo, o que possibilitaria a deposição evaporítica das litofácies que compõem o Membro Ibura da Formação Muribeca. O processo transgressivo culminaria com a deposição das litofácies representativas do Membro Oiteirinhos. Os quadros em laranja e verde assinalam, respectivamente, registros da sedimentação marinha cenomaniana (Formação Cotinguiba, retrabalhado) e eocena (Formação Mosqueiro, *in situ*).

CONCLUSÕES

O soerguimento que sucedeu a ruptura final as placas sul-americana e entre africana provavelmente ao final do Coniaciano (Pereira, 1994) obscureceu quaisquer registros significativos de sedimentação ocorrida ao menos na atual porção emersa, no intervalo Albiano-Coniaciano, os quais estariam representados pelas formações Riachuelo e Cotinguiba. Contudo, a existência de uma fauna de amonóides datada do final do Cenomaniano, indicativa da presença pretérita da Formação Cotinguiba, contendo Pseudocalycoceras sp. cf. P. harpax (Stoliczka, 1864) e Kamerunoceras sp. (Bengtson & Nordlund, 1987), encontrada retrabalhada em sedimentos cenozóicos do Grupo Barreiras nas proximidades da cidade de Marechal Deodoro (Baixo de Varrela; quadrado laranja na Figura 8), evidencia que, ao menos no Cenomaniano, transgressões marinhas teriam atingido essa região. Estas transgressões provavelmente aproveitaram-se das mesmas passagens que conduziram as transgressões ao Baixo de Varrela durante o intervalo de deposição das seções associadas às palinozonas P-230 a P-280.

Mais ao norte, ingressões marinhas subsequentes também teriam deixado registros, a exemplo do constatado em alguns poços perfurados no Baixo de Fazenda Guindaste, onde foi definida a presença da Superzona P-500 (*Proxapertites operculatus*, Daniano-Ypresiano; quadrado verde na Figura 8 e tentativa de correlação na Figura 3). Isto evidencia que algumas ingressões marinhas foram recorrentes em determinados compartimentos estruturais da bacia. Decerto, transgressões marinhas podem ter sido mais abundantes nessa região do que se vislumbra pelos registros preservados ou ao menos pelos até agora reconhecidos.

AGRADECIMENTOS

Os autores agradecem aos membros da Comissão de Revisão Estratigráfica da bacia de Sergipe-Alagoas (PETROBRAS, Aracaju, Sergipe) pela valiosa participação nas discussões acerca do tema em discussão. C. Pierini, C. M. Fischer e B. O. Silva agradecem à PETROBRAS/Aracaju pela permissão e liberação de parte dos dados em publicação.

REFERÊNCIAS

- BACELLAR, P.B. & COSTA, M.N.C. Expressão sísmica da discordância pré-neo-Alagoas - porção nordeste da sub-bacia terrestre de Alagoas. In: CONGRESSO INTERNACIONAL DA SOCIEDADE BRASILEIRA DE GEOFÍSICA, 3, Rio de Janeiro, 1993. Resumos expandidos... Rio de Janeiro: Sociedade Brasileira de Geofísica, v. 1, p. 163-167, 1993.
- BENDER, F. Stratigraphic units in Sergipe Basin. PETROBRAS, Aracaju, Relatório interno, 23 pp., 4 mapas. 1957.
- BENGTSON, P. & NORDLUND, U. The ammonite fauna and genesis of a Mid-Cretaceous siliceous oolite from the Alagoas Basin, Brazil. **Cretaceous Research**, v. 8, p. 305-333. 1987.
- BRADLEY, C.A. & FERNANDEZ, M.N. Early Cretaceous paleogeography of Gabon/Northeastern Brazil. A tectonicstratigrafic model based on propagating rifts. In R. Curnelle (Ed.): Géologie Africaine: Colloques de Géologie de Libreville, Gabão, 6-8 Maio 1991, Recueil des Communications, Mémoire, v. 13, p. 17-30. 1992.
- CAIXETA, J.M.; FERREIRA, T.S.; MACHADO JR, D.L.; Teixeira, J.L.; ROMEIRO, M.A.T. O DESENVOLVIMENTO DA MARGEM RIFTEADA VULCÂNICA ALBIANA NO NORDESTE BRASILEIRO E SEU PERFIL PARA A GERAÇÃO DE PETRÓLEO. **BOLETIM DE GEociências da PETROBRAS**, v. 23, n. 1/2, 18 p., 2015.
- CAMPOS NETO, O.P. A.; SOUZA-LIMA, W.; CRUZ, F.E.G. Bacia de Sergipe-Alagoas. **Boletim de Geociências da PETROBRAS**, v. 15, n. 2, p. 405-415. 2007.
- DIAS, J.L. Análise estratigráfica e evolução da fase "rift" nas bacias das margens leste e sudeste do Brasil. Rio de Janeiro. i-xi, 144 p. 1991. Dissertação (Mestrado), Instituto de Geociências - Universidade Federal do Rio de Janeiro,
- FEIJÓ, F.J. Bacias de Sergipe e Alagoas. Boletim de Geociências da PETROBRAS, v. 8, n. 11, p. 149-161. 1995.
- FIGUEIREDO, A.M.F. Avaliação das perspectivas petrolíferas da Bacia de Sergipe-Alagoas. PETROBRAS, Rio de Janeiro, Relatório interno, 27 p., 32 figuras, 1978.
- FLORÊNCIO, C.P. Geologia dos evaporitos Paripueira na sub-bacia de Maceió, Alagoas, região nordeste do Brasil. São Paulo. 160 p. 2001. Tese (Doutorado), Instituto de Geociências -Universidade de São Paulo.
- LANA, M.C. Bacia de Sergipe-Alagoas: uma hipótese de evolução tectono-sedimentar. In: RAJA-GABAGLIA, G.P. & MILANI, E.J. (eds.), **Origem e evolução de bacias sedimentares**. PETROBRAS, Rio de Janeiro, p. 311-332, 1990.
- MARTINS, G.S. Evolução tectono-estratigráfica dos evaporitos Horizonte e Paripueira na porção alagoana da Bacia de Sergipe-Alagoas e suas implicações na abertura do Oceano Atlântico Sul. Rio de Janeiro, 226 p. 2016. Dissertação (Mestrado), Centro de Tecnologia e Ciências Faculdade de Geologia - Universidade do Estado do Rio de Janeiro,
- OJEDA, H.A.O. Structural framework, stratigraphy, and evolution of Brazilian marginal basins. **The American Association of Petroleum Geologists Bulletin**, v. 66, n. 6, p. 732-749, 1982.
- PALAGI, P. (Relator). Litoestratigrafia da bacia de Sergipe-Alagoas - Subgrupo Coruripe. Parte 3 – Fm. Muribeca, Grupo Sergipe, Fm. Barreiras e sed. de praia e aluviões - Relatório da

Comissão de Revisão da Estratigrafia. PETROBRAS/RPNE, Relatório interno, 64 pp., figuras e seções, 1968.

- PEREIRA, M.J. Sequencias deposicionais de 2ª/3ª ordens (50 a 2,0 Ma) e tectono-estratigrafia no Cretáceo de cinco bacias marginais do Brasil - comparações com outras áreas do globo e implicações geodinâmicas. Porto Alegre, 2 v., 271 p., 1994. Tese (Doutorado), Instituto de Geociências-Universidade Federal do Rio Grande do Sul.
- REGALI, M.S.P. & GONZAGA, S.M. Palinocronoestratigrafia da bacia Potiguar - Rio Grande do Norte, Brasil. In: Departamento Nacional da Produção Mineral, Coletânea de Trabalhos Paleontológicos, Série Geologia, 27, Seção Paleontologia e Estratigrafia, v. 2, p. 443-460. 1985.
- REGALI, M.S.P. Palinoestratigrafia do Neoaptiano/Albiano da bacia de Sergipe/Alagoas Brasil. In: CONGRESSO BRASILEIRO DE PALEONTOLOGIA, 14, Uberaba, Minas Gerais, 1995. Atas...Rio de Janeiro: Sociedade Brasileira de Paleontologia 1995, p. 105-106.
- REGALI, M.S.P. Palinomorfos do Barremiano/Albiano brasileiros. Parte II. In: CONGRESSO BRASILEIRO DE PALEON-TOLOGIA, 10, Rio de Janeiro, 1987. **Anais**... Rio de Janeiro: Sociedade Brasileira de Paleontologia, v. 2, p. 647-655, 1987.
- REGALI, M.S.P.; UESUGUI, N. & SANTOS, A. DA S. Palinologia dos sedimentos meso-cenozoicos do Brasil (I). **Boletim Técnico da Petrobrás**, v. 17, n. 3, p. 177-191. 1974.
- REGALI, M.S.P.; UESUGUI, N.; SANTOS, A.S. Palinologia dos sedimentos meso-cenozoicos do Brasil (II). **Boletim Técnico da Petrobrás**, v. 17, n. 4, p. 263-301, 1975.
- SCHALLER, H. Revisão estratigráfica da Bacia de Sergipe/Alagoas. **Boletim Técnico da PETROBRAS**, v. 12, n. 1, p. 21-86. 1970.
- SOUZA-LIMA, W. Litoestratigrafia e evolução tectonosedimentar da bacia de Sergipe-Alagoas. **Phoenix. Introdução**. n. 89, p. 1-10. 2006.
- SOUZA-LIMA, W. Sequencias evaporíticas da bacia de Sergipe-Alagoas. In: MOHRIAK, W. U.; SZATMARI, P. & ANJOS, S.
 M. C. (eds.), Sal: Geologia e Tectônica. Editora Beca, PETROBRAS, São Paulo, p. 230-249. 2008.
- SOUZA-LIMA, W.; ANDRADE, E. DE J.; BENGTSON, P. & GALM, P.C. A bacia de Sergipe-Alagoas Evolução geológica, estratigráfica e conteúdo fóssil. Fundação Paleon-tológica Phoenix, **Phoenix Edição Especial**, n. 1, 34 pp. 2002.
- SOUZA-LIMA, W.; PIERINI, C.; FISCHER, C.M. & SILVA, B.O. Revisão litoestratigráfica da seção cretácea aflorante no norte do Estado de Alagoas, bacia de Sergipe-Alagoas, Brasil. Anuário do Instituto de Geociências – UFRJ, v. 42, n. 3, p. 16-32. 2019.
- STOLICZKA, F. The fossil Cephalopoda of the Cretaceous rocks of Southern India (Ammonitidae) [cont.]. Memoirs of the Geological Survey of India, **Palaeontologia Indica**, v. 3, p. 57-106 [17-66], 1864.

Submetido em 12 de setembro de 2020 Aceito para publicação em 24 de abril de 2021