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RESUMO - Este artigo apresenta dois novos métodos baseados em krigagem para medir a incerteza associada às estimativas. Ambas 
as abordagens combinam a Variância de Krigagem (KV), que é um bom índice da configuração espacial dos dados, com uma segunda 
componente que mede localmente a dispersão dos dados. O primeiro método proposto, denominado Índice Combinado (IC), mescla o 
KV com a distribuição condicional local estimada por Median Indicator Kriging. O nome do segundo método proposta é Variância 
Combinada II (CVII), altera a equação originalmente proposta pela "Variância Combinada" para combinar KV e a Variância de 
Interpolação. No estudo de caso, comparamos os dois métodos propostos com outras abordagens disponíveis na literatura usando 
o amplamente conhecido conjunto de dados de Walker Lake. Os resultados indicam que ambos os métodos propostos superaram as 
demais soluções disponíveis. O índice CVII superou sua formulação original em todos os cenários testados. 
Palavras-Chave: Geoestatística. Incerteza da Krigagem. Median Indicator Kriging. Variância de interpolação. 
 
ABSTRACT - This paper presents two novel kriging-based methods to measure the uncertainty associated with geostatistical 
estimates. Both approaches combine the Kriging Variance (KV), which is a good summary of the spatial configuration of the data, with 
a second component which locally measures the data dispersion. The first proposed method, referred to as the Combined Index (CI), 
merges KV with the local conditional distribution estimated by median Indicator Kriging. The name of the other method is Combined 
Variance II (CVII) revises the equation originally proposed by Combined Variance to merge KV and the Interpolation Variance. We 
compare the two proposed methods to other approaches available in the literature in a case study using the widely known Walker Lake 
dataset. The results indicate that both proposed methods outperformed the other tested solutions. The CVII index outperformed its 
original formulation in all the tested scenarios. 
Keywords: Geostatistics. Kriging Uncertainty. Median Indicator Kriging. Interpolation Variance. 
 

INTRODUCTION 
All models are subject to uncertainty and no 

analysis or decision-making is optimal if we 
ignore this fact. Therefore, it is highly 
recommended to associate an index of 
uncertainty to any estimated value.  

The methods of geostatistical simulation, 
specifically the sequential methods, became in 
the last decades the standard approach to quantify 
uncertainties and classify the mineral resources 
(CIM, 2019; Gómez-Hernández & Srivastava, 

2021). However, estimating the uncertainty by 
kriging-based methods still have some 
advantages: 

• Kriging-based methods are computationally 
cheap, being adequate to almost any modelling 
routines. Simulating and processing a large 
number of realizations is a cumbersome process 
that may not fit to routines performed on a daily 
or weekly basis, such as grade control or short-
term; 
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• Methods of simulation and estimation 
commonly relies on different assumptions and 
have different properties. The space of 
uncertainty assessed by geostatistical simulation 
may overlook or overweigh the real sources of 
deviation between the kriged and actual value. 
Example of possible factors are domain 
stationarity, conditional bias and sensibility to 
outlier, among others. 

Considering the kriging-based methods 
available in the literature and their limitations, 
we propose two novel indexes of uncertainty: (i) 
The Combined Index which merges Kriging 
Variance (KV; Matheron, 1963) with the 
conditional cumulative distribution function 

(ccdf) locally estimated by median Indicator 
Kriging (IK; Journel, 1982); and (ii) the 
Combined Variance II (CVII), an adaptation of 
the method originally proposed by Arik (1999). 
CVII uses a new equation to merge KV and 
Interpolation Variance (IV; Yamamoto, 2000). 

This paper is structured as follows: methods 
available in the literature and their properties are 
reviewed. It is presented both the novel proposed 
methods, referred to as Combined Index (CI) and 
Combined Variance II (CVII). Next, both 
proposed methods are applied to the Walker Lake 
data (Isaaks & Srivastava, 1989) and their results 
are compared with methods available in the 
literature. Discussions and conclusions follow.

REVIEW OF METHODS 
The focus of the present section is to review 

geostatistical methods and relevant properties we 
will refer to it later in this article. For further 
details and fundamentals of the cited subject, the 
reader is directed to standard geostatistical 
textbooks (e.g. Journel & Huijbregts, 1978; 
lsaaks & Srivastava 1989; Goovaerts, 1997; 
Deutsch & Journel, 1998). 
Kriging Variance (KV)  

The KV has three key properties that are 

relevant in this study (Goovaerts, 1997): (i) it is 
dependent on the used variogram model, (ii) 
dependent on the data configuration on the space, 
and (iii) independent of data values. Goovaerts 
qualifies the first two properties as excellent 
features, but he considers the third property to 
be a bad feature because it results in the fact 
that an area surrounded by data with 
heterogeneous or homogeneous grades has the 
same KV (Figure 1).

 

 
Figure 1 - Estimation of blocks from the same data configuration. The Kriging Variance of A and B is the same due to 
its independence do data values (Adapted from Armstrong 1984). 

 

Therefore, we consider KV a good summary of 
the spatial configuration given the modelled 
variogram structural distance.  

Hereafter KV will be respectively referred to as 
σ𝑂𝑂𝑂𝑂2  or σ𝑆𝑆𝑂𝑂2  when computed respectively from 
Ordinary (OK) or Simple Kriging (SK; Matheron, 
1963). 
Interpolation Variance (IV) 

The IV measures the local data dispersion 
through the average difference between the 
estimated value z*(x0) and its n retained data z(xi) 
weighted by the kriging weights wi, where i = 1,..,n 
(Equation 1). 

 σ𝐼𝐼𝐼𝐼2  =  �𝑤𝑤𝑖𝑖[𝑧𝑧(𝑥𝑥𝑖𝑖) − 𝑧𝑧∗(𝑥𝑥0)]2
𝑛𝑛

𝑖𝑖 = 1

 (1) 

 

The variance σ𝐼𝐼𝐼𝐼2  increases with the variability 
of z(xi) around x0.  

The IV is assumed as being indirectly 
influenced by the variogram structural distance 
associated with the weights 𝑤𝑤𝑖𝑖. More details in 
Yamamoto (2000). 
Indicator Kriging (IK) 

The IK (Journel, 1983) handle with 
transformed data within a chosen stationary 
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domain, we code observations as 1 if their values 
are above a given threshold grade and otherwise, 
they are assigned to 0. The estimated indicators 
can be interpreted as the probability or proportion 
of each point to belong to the class defined by 
the threshold as 1. It is worth to highlight that IK 
estimates are dependent on the indicators 
variability, but little influenced by data spacing 
(Figure 2). 
Combined Variance (CV) 

The CV combines KV, which explicitly 
accounts for the local variability of the variable 
of interest and the IV, which is a good summary 
of the spatial data configuration around the 

estimated node (Equation 2). 
 

 σ𝐶𝐶𝐼𝐼2  =  �σ𝐼𝐼𝐼𝐼2 ∗ σ𝑂𝑂𝑂𝑂2  (2) 
 
The use of non-normalized variogram to 

compute CV is necessary to assure that IV and 
KV are in the same scale (Arik, 1999). 
Median IK (mIK)  

We may use the mIK as a non-parametrical 
method to produce an approximation of the local 
distribution at each unsampled node thought 
discretizing the ccdf into multiple thresholds 
(Figure 3).

 

 
Figure 2 - Estimation of blocks from the same indicator values. See that both estimated values are equal, indifferently of 
the distance between data and the block node. 

 
Figure 3 – Ccdf inferred by interpolating the probabilities between pairs of classes estimated by multiple Indicator 
Kriging. The tails are extrapolated by a defined equation between the lower threshold and the minimum value, and 
between the upper threshold and the maximum value. 
 

The median IK simplifies the task of 
managing several thresholds by assuming that we 
can approximate the individual variogram for 
each class K by a single model, usually, the 

indicator variogram of the median. We highlight 
the following points of attention: 
(i) The assumption that we may approximate 
each K variogram by a single model always must 
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be checked (Isaaks & Srivastava, 1989, pp. 444). 
Other solutions to manage multiple classes must 
be considered when the median IK assumption 
does not hold; 
(ii) The mIK estimates are very sensitive to the 
assumption of stationarity. It is recommended 
analyzing whether the defined thresholds are both 
locally and globally adequate to all domain areas; 
(iii) The estimates are carried out separately for 
each class K, and then the order relations of the 
resulting estimated ccdf values must corrected if 
necessary (Journel, 1983; Deutsch and Journel, 
1998). We recommend discretizing the data 
distribution into a number between 7 and 15 
classes. 

Journel (1983), Deutsch & Journel (1998) or 
Carvalho & Deutsch (2017) presents more details 
about IK, median IK and estimating ccdf from  

 

multiple thresholds; 
Multi-Gaussian Kriging (mGK) 

The mGK relies on the property in which any 
weighted average of multi-Gaussian variables 
follows the same distribution, and that these 
distributions may be entirely determined by the 
value and variance computed by Simple 
Kriging, in which relies on a strong assumption 
of stationarity (Verly, 1983, 2005; Deutsch & 
Journel, 1998). As most variables are not 
Gaussian, the approach requires a quantile trans-
formation of data value and a back transformation 
of the estimated values, a procedure called 
“normal-score transformation”. 

Next section presents two novel approaches, 
the CI is based on combining local ccdf estimated 
by median IK with σ𝑂𝑂𝑂𝑂2  while CVII combines 
σ𝑂𝑂𝑂𝑂2  with the Interpolation Variance.

METHODOLOGY 
The Combined Variance II 

The Combined Variance II (CVII) replaces 
the Equation 2 originally proposed by Arik 
(1999) by Equation 3, a theoretically sound 
equation to combine distributions. In the 
independent case we get: 

 

 CVII = �σ𝑜𝑜𝑜𝑜2 σ𝐼𝐼𝐼𝐼2 + z𝑜𝑜𝑜𝑜
2 (σ𝐼𝐼𝐼𝐼2  +  σ𝑜𝑜𝑜𝑜2 )  (3) 

 

In the dependent case, it is necessary to use 
Equation (4) in its full form. It is always 
recommended to check the hypothesis that the 

dependence is negligible because this relation-
ship may occur as stated in Yamamoto (2000): 
“[…] the interpolation variance indirectly uses 
the variogram structural distance through the 
ordinary kriging weight. The more influential 
datum location receives the greater weight.” 
The Combined Index (CI) 

The CI combines the Kriging Variance 
σ𝑜𝑜𝑜𝑜2  with the variance σ∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2  of the ccdf 
estimated by median IK through equation 4, 
which shows the product of two distributions (X 
and Y) in the dependent case: 

 

 σ²(X*Y) = Cov(X2,Y2)+[ σ²(X)+E(X)2]⋅[ σ²(Y)+E(Y)2]−[Cov(X,Y)+E(X)E(Y)]2 (4) 
 

Note that in the independent case Cov(X2, 
Y2) = 0 the terms [E(X)E(Y)]2 cancel out. Under 
the assumption of independence between 
σ𝑜𝑜𝑜𝑜2  and σ∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2 , the proposed index is defined as 
follows (Equation 5): 

 

 
σ𝐶𝐶𝐼𝐼2  = CI = 

�σ𝑜𝑜𝑜𝑜2 σ𝑐𝑐𝑐𝑐𝑐𝑐2 + z𝑜𝑜𝑜𝑜
2 σ𝑐𝑐𝑐𝑐𝑐𝑐2  + z𝑚𝑚𝐼𝐼𝑂𝑂

2 σ𝑜𝑜𝑜𝑜2   
(5) 

 

The CI has the following features: (i) The 
index is zero if the estimated node coincides with 
a sampled datum; (ii) The KV component makes 
it a good index of the data configuration, being 
proportional to the variogram structural distance; 
(iii) The σ∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

2  component is proportional to 
the local data variability. The Kriging Variance 
must be computed considering the original-
units variogram so that it would be on the same 

scale of the estimated ccdf. Next, we apply the 
Combined Index in one schematic case. 
Combined Index: an illustrative example 

The illustrative case study uses a synthetic 
bidimensional dataset of the continuous variable 
V. The data positions are randomly distributed 
in space following an average spacing of 200 x 
200 m. The data values are a single realization 
drawn from a non-conditional simulation with 
a highly skewed distribution and an isotropic 
variogram model with a single spherical 
structure with a range of 800 m and variance 
contribution C = 15.000 (75%), and nugget C0 
= 5.000 (25%) (Figure 4a). A small area with 
21 values was sampled from the simulated 
dataset. The subset is used to illustrate the CI 
index as a function of the values of four 
clustered values, referred to as X, Y, Z and K 
(Figure 4b).
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Figure 4 - A) map of the sample data and B) enlarged around the area to be analyzed. 

 

The normalized median variogram of V is 
isotropic with range of 1100 m, C = 0.85, and C0 
= 0.15. All estimates required at least 10 data in 
the neighbourhood. The percentiles 0.15, 0.3, 
0.45, 0.5, 0.6, 0.75, and 0.9 are respectively 
delimited by the grades 7, 11, 13, 14, 15, 28, and 
52 units. The variogram models and the 
distribution of the variables of interest are 
assumed the same in all scenarios since the four 
varying values (X, Y, Z and K) correspond to less 
than 2% of the complete dataset. 

The median IK and OK estimates were carried 
out using a non-discretized 5 x 5 m block model. 
Figure 5 shows the CI map of four scenarios. The 
available data are distributed over a wide range 
of values, the low-grades domain is preferentially 
located in the superior area (Vertical axis > 1600 
m) and the high-grade in the central areas.  

The samples X, Y, Z and K are in the 
transition between these domains. Each scenario 

attributes different values of V to samples X, Y, 
Z and K. The Ordinary Kriging Variance (Figure 
5a) is the same in all scenarios. 

In Figure 5b, we have in the first scenario the 
values X = Y = Z = K = 50 and the dashed area 
shows a high-grade domain with low uncertainty. 
The CI values rise towards NW, indicating a high 
uncertainty at the abrupt transition between the 
dashed area and the low-grade domain. In figure 
4c, the values X = Y = Z = K = 5 reduces the 
high-grade domain and increase the index on the 
left side of the dashed-circle because of the 
abrupt change between areas. In figure 5d we 
have X = Z = 5 and Y = K = 50 while in Figure 
5e X = Z = 70 and Y = K = 5, in both scenarios 
we observe an area with highly heterogeneous 
grades. Figure 5e shows a large CI indicating a 
high uncertainty about the limits between the 
different clusters of high and low values in a 
highly heterogeneous spatial distribution.

 

 
Figure 5 - Maps of the A) Kriging Variance of all scenarios and the individual maps of combined deviation of four 
scenarios with different values of the samples X, Y, Z and K. All maps plotted in standard deviation units. 
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Figure 6 shows a linear relationship of the 
scatterplots and the correlation coefficient 
ranging from 0.59 to 0.78 between the CI 
estimated uncertainty (x-axis) and the 
uncertainty simulated by Sequential Gaussian 
Simulation in the y-axis (Isaaks 1990; Deutsch & 
Journel 1998). The simulation of 100 realizations 
is carried out in 200 x 200 m blocks discretized 
in a 5 x 5 m grid. 

We observe that the CI value is greater at the 
locations surrounded by data with heterogeneous 
values than at a location surrounded by data with 
similar values.  

The bigger is the distance between the data 
and the estimated node, or more clustered the 
data are, the higher the CI value is. Next, both 
proposed methods are compared to other 
methods available in the literature.

 

 
Figure 6 - Scatter plot between the Combined Deviation (x-axis) and the variance within realizations, both computed at 
200 x 200 m blocks discretized in a 5 x 5 m grid. The four cases use the same dataset which variations on the values of 
samples X, Y, Z and K. 

COMPARATIVE EXAMPLE 
Presentation of the dataset 

In this example the proposed and reviewed 
methods are applied to two re-scaled datasets of 
the exhaustive Walker Lake dataset (Isaaks & 
Srivastava, 1989). The first dataset is composed 
of 196 samples of the variable U in a pseudo-
regular grid of 20 x 20 m. The second dataset is 
composed of 469 samples, combining the first 
dataset with additional data preferentially 
sampled in the high-grade areas. 

The variogram models were adjusted for the 
exhaustive dataset in original units (8a), indicator 

of the median (8b) and for data in Normal-Score 
units (8c). All models showed anisotropy with 
longer and shorter continuity respectively in the 
N157.5° and N67.5º directions. We used 
Ordinary Kriging for estimate in 10 x 10 m 
blocks the U variable of both re-scaled datasets 
(Figure 7b and 7c). All methods were run using 
the open-source software SGeMS (Remy, 2009), 
Datamine® Studio RM® 1.9 and algorithms 
wirtten by the author. However, it is worth to 
highlight that the presented algorithms may be 
run in almost any geostatistical software with 
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minor adaptations. 
The search ellipse ranges are equal to the 

range of the original-units variogram (Figure 8), 
with a minimum of 12 and a maximum of 48 

samples. All negative weights were reset to zero 
and the sum of the remaining non-zero weights is 
standardized to 1 to ensure unbiasedness 
(Deustch, 1996).

 
Figure 7 - Datasets and block models of U using the Walker Lake dataset: A) Exhaustive dataset; Block model 10 x 10 
m estimated using rescaled datasets composed of B) 196 samples and C) 469 samples. The dataset histogram of D) 196 
samples and, E) 469 samples. 

 

 
Figure 8 - Experimental variogram (Black line) and Variogram models (Red line) for variable U adjusted to data in A) 
Original units; B) Median indicator and, C) Normal-score units. 

 

The comparison between methodologies is 
performed using two reference models: 

• The “Actual Deviation” is the absolute 
difference between the grade of each reference 
value of each block the value estimated by OK 
using both re-scaled dataset (196 and 469 
samples). The reference model is given by 
averaging into the 10 x 10 m block model the 
exhaustive dataset composed of 78.000 samples; 

• Simulated Uncertainty assessed by 
Sequential Gaussian Simulation (SGS; Isaaks 

1990; Deutsch & Journel, 1998). Each 10 x 10 m 
block was discretized into a 1 x 1 m grid and 100 
realizations were performed at each one. The 
uncertainty associated with each block is given 
by the variance among its realizations. 

To support our analysis, we fitted one linear 
model of regression to measure the similarity 
between the uncertainty estimated by each 
compared methods (x-axis) with both models of 
reference (y-axis).  

The similarity is measured by: (i) the 
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coefficient of correlation “r”, which measures the 
relative percentage of the reference uncertainty 
variable variance that the model explains, 
ranging from 0 to 1; (ii) The standard error of the 
regression measures the average distance that the 
estimated uncertainty is from the regression line 
using ranked-value units. The analysis uses raw 

and ranked values. Rank regression provides an 
objective approach to dealing with non-normal 
distributions. 

Next, the methods are experimentally 
compared to the Actual Deviation and the 
Simulated Uncertainty models using both 
rescaled datasets.

MEASURING THE MODEL UNCERTAINTY 
All estimates were performed using the 

datasets composed of 196 and 469 samples. They 
used a search ellipse with distances equal to the 
ranges of their variograms (Figure 8), with a 
minimum of 12 and a maximum of 48 samples. 
It worth to highlight that the variable U is 
additive, then all methods were estimated at point 
support and the uncertainty obtained over a 
discretization of the 10 x 10 m block model: 

• Kriging Variance (KV): KV computed 
from the OK estimates (Figure 7b and 7c); 

• Variance of Interpolation (IV): 
Computed using both the kriging weights defined 
by OK; 

• Median IK: The variable U distribution 
was discretized into 10 deciles and the indicator 
of each class was estimated using the Indicator 
Variogram of the median (Figure 8b). The order 
relation among classes was corrected by averaging 
the upward and downward corrections (Deutsch 
& Journel, 1998); 

• Combined Variance (CV): Combination 
between KV and IV using Equation 2; 

• Combined Variance II (CVII): Combi-

nation between KV and IV using Equation 5. 
• Multi-Gaussian Kriging (mGK): 

Estimated using SK and the Normal-Score 
variogram (Figure 8c); 

• Combined Index (CI): Combination 
between KV and mIK using Equation 4. 

Table 1 present the coefficient of correlation 
and the error of regression between the reference 
and the compared models estimated using the 
both rescaled datasets. The best results are 
obtained by mGK, CI, mIK and CV, while KV 
correlation is negligible. The CVII 
overperformed the original CV in all the 
compared scenarios. 

It is important to highlight that an unfair 
advantage is given to mGK when the simulated 
uncertainty is used as the refence model because 
many steps of the SGS and mGK workflows are 
shared, such as the same assumptions and 
theoretical background. The mGK is 
outperformed by CI and CVII when we analyze 
the “Actual Deviation”. The second point to 
discuss is the high performance of KV shown in 
Table 1.  

Table 1 – Descriptive statistics between different estimates of uncertainty estimates using 196 or 469 samples and their 
association with two reference models: Uncertainty simulated by SGS; and the actual error between 10 x 10 m block 

models estimated by OK using the rescaled and the exhaustive dataset. The regression error is based on ranked values. 
Estimates with 196 samples  

Sim. Uncertainty Actual Error 
Method r rrank Reg. Errorrank r rrank Reg. Errorrank 

Krig. Var. 12% 11% 224 -3% -3% 225 
Interp. Var. 43% 37% 210 43% 38% 208 

mGK 89% 91% 210 25% 36% 211 
mIK 77% 84% 122 15% 38% 209 

Comb. Var. 44% 38% 208 39% 37% 209 
Comb. Var. II 75% 80% 136 40% 48% 198 
Comb. Index 84% 88% 109 28% 44% 203 

   Estimates with 469 samples    
Method r rrank Reg. Errorrank r rrank Reg. Errorrank 

Krig. Var. 12% 11% 224 -3% -3% 225 
Interp. Var. 43% 37% 210 43% 38% 208 

mGK 89% 91% 210 25% 36% 211 
mIK 77% 84% 122 15% 38% 209 

Comb. Var. 44% 38% 208 39% 37% 209 
Comb. Var. II 75% 80% 136 40% 48% 198 
Comb. Index 84% 88% 109 28% 44% 203 
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Its performance may be attributed to the fact 
that the lowest-simulated uncertainty is 
coincident with the more densely-sampled areas. 

Figure 9 shows the maps of uncertainty 
estimated by mGK, CVII and CI, the two 
reference models and their difference.  

Estimated maps using the dataset of 196 
samples have an uncertainty roughly correlated 
with the grade. The reason is that the high-
grade and transition areas are spatially 
associated with samples with higher amplitude 

of variation. 
The dataset with 469 samples partially 

balances the relationship between the sampling 
grid and local variability measured by mGK. In 
contrast, CVII and CI uncertainty maps still 
indicating association between higher uncertainty 
and high-grade areas, being these consistent with 
the “Actual Deviation” model of reference 
(Figure 9, right side). 

Next, the results are discussed, and 
conclusions are drawn.

 
Figure 9 - Maps of reference generated by A.I) Geostatistical Simulation and A.II) the difference between the model 
estimated using the exhaustive and the samples with 196 and 469 samples in the left and hand-side hand, respectively. 
Uncertainty maps estimated using mGK (B.I), CVII (B.II) and CI (B.III) are shown and compared with both reference 
models by subtracting the ranked uncertainty value of each estimated and reference map (columns C and D). 

DISCUSSIONS AND CONCLUSIONS 
We proposed two methodologies to measure 

the uncertainty associated with kriging 
estimates. The Combined Index II combines the 
Kriging Variance, which is a good index of the 
data configuration, with the ccdf estimated by 
multiple Indicator Kriging. The second 
approach reviews the equation initially 
proposed by Arik (1999) to combine the Kriging 

Variance with the Interpolation Variance. In 
the presented case study, the proposed 
methodologies outperformed all other compared 
methods.  

The proposed methodologies represent 
alternatives to the computationally intensive 
approach of stochastic simulation in some 
applications. 
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