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ABSTRACT - When different time periods are considered, detection of past and present changes in land cover are enabled, also for 
quantifying and qualifying those changes. Land cover/use maps are the primary tools for the management and conservation of natural 
and man-made areas. For this, remote sensing bands of the reflected spectrum are usually used, leaving aside the thermal data. The 
objective of this work was to evaluate the inclusion of the thermal band (b10) of the TIRS (Thermal Infrared Sensor) sensor of Landsat 
8 satellite to increase the land cover maps accuracy in the Pampa biome from object-oriented classification. For the development of 
the research, 11 scenes of the Landsat 8, OLI sensor and TIRS were used. Thus, 14 cells were selected in the Brazilian Pampa, totalling 
5% of its area. The following steps were performed: obtaining land surface temperature (LST) data and vegetation indices; data 
preparation; object-oriented classification; validation with 1354 reference points and analysis of the results. The results showed that 
the insertion of thermal bands, especially from different dates, increased the discrimination among classes. The classification presented 86% 
of global accuracy. Therefore, it is recommended to insert thermal data for mapping and environmental monitoring of the Pampa biome. 
Keywords: Brazilian Pampa. Remote sensing. Surface temperature. Object-oriented classification. Suppression of vegetation. 
 

RESUMO - Quando diferentes períodos de tempo são considerados, a detecção de mudanças passadas e presentes na cobertura do solo 
é habilitada, também para quantificar e qualificar essas mudanças. Os mapas de uso / cobertura do solo são as principais ferramentas 
para a gestão e conservação de áreas naturais e artificiais. Para isso, normalmente são utilizadas bandas de sensoriamento remoto do 
espectro refletido, deixando de lado os dados térmicos. O objetivo deste trabalho foi avaliar a inclusão da banda térmica (b10) do sensor 
TIRS (Thermal Infrared Sensor) do satélite Terrestre 8 para aumentar a precisão dos mapas de cobertura do solo no bioma Pampa a 
partir da classificação orientada a objetos. Para o desenvolvimento da pesquisa, foram utilizadas 11 cenas do Landsat 8, sensor OLI e 
TIRS. Assim, foram selecionadas 14 células no Pampa brasileiro, totalizando 5% de sua área. As seguintes etapas foram realizadas: 
obtenção de dados de temperatura da superfície da terra (LST) e índices de vegetação; preparação de dados; classificação orientada ao 
objetos; validação com 1354 pontos de referência e análise dos resultados. Os resultados mostraram que a inserção de faixas térmicas, 
principalmente a partir de datas diferentes, aumentou a discriminação entre as classes. A classificação apresentou 86% de acurácia 
global. Portanto, recomenda-se inserção de dados térmicos para mapeamento e monitoramento ambiental do bioma Pampa.  
Palavras-chave: Pampa Brasileiro. Sensoriamento remoto. Temperatura de superfície. Classificação orientada ao objeto. Supressão 
da vegetação. 

INTRODUCTION 
The production of land use and land cover 

(LULC) maps is one of the most frequent goals 
of remote sensing (RS) based works. Among the 
various applications of these maps, we find an 
indication of the conservation status of eco-
systems, as well as sites of sequestration and 
emission of atmospheric carbon. When different 
dates of images are considered, quantitative and 
qualitative detection of changes in LULC is 
feasible, enabling past and future monitoring of 
maps´ classes. LULC maps are essential tools for 
the management and conservation of natural and 

anthropized areas (Gómez et al., 2016). 
Maps of the Brazilian Amazon, presenting 

forested areas, past and recent deforestation, have 
been produced since 1988 based on orbital images 
(mainly from Landsat series), and are the basis for 
estimating annual deforestation rates (INPE, 2019). 
These rates are used for the establishment of public 
policies and, more recently, for government agree-
ments in the area of climate change and greenhouse 
gases, in the context of REDD+ (Reduction of 
Emissions from Deforestation and Forest Degrada-
tion), required by the United Nations Framework 
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Convention on Climate Change (UNFCCC) 
(MMA, 2017). The financial compensation that 
may come from the mechanisms of REDD+ 
depends on the standing forest and, recently, 
consider the other biomes of Brazil as potential 
areas of conservation for financial compensation. 

The Pampa biome, which is covered mainly by 
grasses and herbaceous vegetation in rangelands, 
is considered by REDD+ mechanisms, and, as 
part of that, INPE is conducting its monitoring 
and mapping, with the first results available on 
the TerraBrasilis platform. Grasslands are one of 
the largest coverages on the planet (approximately 
32%) and, after the forests, they represent the 
second-largest carbon reservoir, (Assis et al., 2019) 
justifying its inclusion in the REDD+ mechanisms. 

The Pampa biome occurs in the southern half 
of Brazilian Rio Grande do Sul state, Uruguai and 
part of Argentine, and is part of the Temperate 
grasslands. Its native grasslands (herein called 
grasslands) are generally explored under conti-
nuous and extensive grazing, in some locations in 
mixed crop systems with rice, soybean, and 
wheat. In recent years part of Pampa have been 
converted to other uses, such as agriculture and 
monocultures of exotic trees (pine and eucalyptus). 
The conversion rate of grasslands to agricultural 
areas has been of the order of 1000 km² per year 

(Cordeiro & Hasenack, 2009) demonstrating the 
urgent need to map their remnants to guide mana-
gement and conservation policies. By 2018, the 
Pampa biome had approximately 46% of its native 
vegetation converted to other uses (INPE, 2019).  

The challenges of mapping grasslands with 
remote sensing (RS) images are immense. The 
wide variety of Pampa grassland physiognomies 

(Hasenack et al., 2010; Moreira et al., 2019), 
includes grasslands with prostrate grasses, with 
clumps (cespitous), wetlands and with different 
types of management, dependent on soils, 
climate, and phenological stages. The spectral 
behavior of these complex physiognomies can 
hinder their discrimination in RS images. 
Moreover, confusion can occur when discri-
minating between grasslands and croplands. 

Visual/manual discrimination of degraded or 
converted grasslands for other uses in RS images 
is a widely used method, and, if combined with 
field data, ensures high accuracy in the generated 
maps (Kuplich et al., 2016). However, for 
frequent monitoring and operational surveillance, 
the automatic classification of RS images is used 
with relative success for mapping grasslands in 
various regions of the world (Assis et al., 2019). 
Important requirements for accurate classification 
of grassland vegetation are the use of different 
seasons multispectral optical images, to cover 
grasses phenological stages and rangelands mana-
gement types. Combined with this, land surface 
temperature (LST) images can be used to 
complement this process, improving the efficiency 
of LULC classification (Ehsani & Quiel, 2010; 
Eisavi et al., 2015; Sun & Schulz, 2015; Zhao et 
al., 2019). Different researches (Mangafić et al., 
2018; Käfer et al., 2020) also highlighted the use 
of thermal bands for the study of grasslands. 

The objective of this work was to evaluate the 
inclusion of the thermal band (b10) of TIRS 
(Thermal Infrared Sensor) sensor of Landsat 8 
satellite as to increase the discrimination between 
Pampa vegetation classes and the accuracy of the 
LULC maps generated.

MATERIAL AND METHODS 
Study area 

For the development of this research, fourteen 
25 km x 25 km cells were selected as study areas in 
the Brazilian Pampa (Figure 1), corresponding to 
approximately 5% of the biome. 

The Pampa is the only Brazilian biome covering 
only one state, Rio Grande do Sul, occupying 63% 
of its territory. It was recognized as a biome only in 
2004, but it is part of one of the most important 
temperate grasslands in the world, with a 
predominance of rangelands, wetlands, riparian 
forest and woodlands (MMA, 2019). 
Materials 

For the development of this research, 11 
Landsat 8 images (OLI and TIRS sensors) were 

used for different dates (2017 and 2018). The 
images were downloaded from the United States 
Geological Survey (USGS) site with bands 2 (blue 
0.45 - 0.51 μm), 3 (green 0.53 - 0.59 μm), 4 (red 
0.64 – 0.67 μm), 5 (near infrared 0.85 – 0.88) μm 6 
(medium infrared 1.57 – 1.65 μm) and 7 (medium 
infrared 2.11 – 2.29 μm) in surface reflectance (SR) 
of the OLI sensor and band 10 (thermal infrared 
10.60 - 11.19 μm) of the TIRS sensor in brightness 
temperature (BT). The processing was done with 
Ecognition and QGIS 2.14 softwares. 
Methods 

Figure 2 presents a flowchart with the methodo-
logical steps of this reasearch, which are 
explained next.  
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Figure 1 - Study area location: a) Location of Brazilian Pampa; b) Location of study cells in the Pampa Biome; c) Initial cell 
of the classifications. 

 
 

 
Figure 2 - Flowchart of methodological procedures. 

Step 1 
Several studies (Van de Griend & Owen, 1993; 

Sobrino et al., 2008; Ndossi & Avdan, 2016; 
Gerace & Montarano, 2017; Dong et al., 2020; 
Käfer et al., 2020) applied or developed prototypes 
to recover LST considering variables such as 

emissivity, meteorological and atmospheric data, 
underlining the advantages of each method. In this 
work, the LST estimates were performed in the 
QGIS software based on the methodology 
presented by (Ndossi & Avdan, 2016). 

For estimating LST, it was considered the 
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correction of emissivity only, according to 
equation 1.  

The emissivity image was obtained from the 
relationship with the Normalized Difference 
Vegetation Index (NDVI) (Equation 1 and Table 
1), according to the methodology used in other 
studies (Van de Griend & Owen, 1993; Guo et al., 
2020; Valor & Caselles, 1996; Sobrino et al., 2004; 
Zhang & Xiao, 2007). 

 

(1) 
 

where ST is the land surface temperature; BT is 
the at-sensor brightness Temperature (K); λ is the 
wavelength of the emitted radiance; α is the hc/K = 
1.438 x 10-2 mK; Ɛ and is the spectral emissivity.  
 

(2) 
 

where b5 is the near infrared band; and b4 is red 
band. 

 

Table 1 - NDVI and Emissivity relantionship. 
NDVI Emissivity 

NDVI < -0.185 0.995 
-0.185 ≤ NDVI < 0.157 0.985 
0.157 ≤ NDVI ≤ 0.727 1.009 + 0.047 x ln(NDVI) 

NDVI > 0.727 0.990 
     Source: Adapted from Ndossi & Avdan (2016). 

 

Step 2 
The image classification was performed in the 

Ecognition software, so first, the segmentation of 
the images was done using the Multiresolution 
Segmentation algorithm, considering different 
values of scalar factor, shape, and compactness. 
The scale factors were tested for values of 50, 100, 
150, and 200, considering compactness of 0.8 and 
form 0.3.  

After segmentation, homogeneous regions were 
selected, representing objects that could be 
classified, avoiding the salt and pepper effect found 
in pixel-by-pixel classifications (Blaschke et al., 
2000; Blaschke, 2010). 

Using the different colored band compositions, 
including SR and LST bands, training samples 
were collected for grasslands, croplands, and forest 

classes (herein refered as woodlands, as they 
included reduced tree patches as well). For the 
areas covered by water, a mask of "non-vegetation" 
was created, so they were not considered in the 
classifications. 
Step 3 

The Feature Space Optimization tool (from 
Ecognition) allowed to verify the separability 
between classes using combinations of different 
surface SR and BT bands.  

The three classes established in step 2 and the 
different spectral bands considered, generated 
different band combinations with distinct values of 
separation between the classes. The bands chosen 
were the ones that presented the highest values in 
relation to the separation of classes, that is, the 
bands that presented less confusion between the 
classes.  

For the study area classification, the object-
oriented method was used, which considers 
pertinence functions or fuzzy logic.  

The equations were established from the 
combination of spectral bands (band mathematics) 
that demonstrated better separability between 
classes. When using fuzzy functions, each object 
can be associated with different degrees of 
pertinence, these ranging from 1 (belongs) to 0 
(does not belong). The greatest degree of 
pertinence define the class to which the object 
belongs (Pinho et al., 2005). Different works, Tang 
et al. (2016), highlighted that object-oriented 
classification generally produced maps with 
greater accuracy than pixel-by-pixel ratings. 
Step 4 

For validating the classification, random 
reference points were distributed regularly on the 
test cells, comprising 1354 points with a distance 
of 1.5 Km. Thus, each point was interpreted 
considering high-resolution images of the Google 
Earth tool, Landsat 8 images with different band 
compositions and seasons, and 2016/2018 
deforestation data available on the Terra Brasilis 
Platform (MMA, 2019; Almeida et al., 2020). The 
reference points were compared with each 
classified cell, generating a confusion matrix that 
allowed to calculate the classification global 
accuracy and producer and user accuracies.

RESULTS AND DISCUSSION 
Tests with different segmentations identified 

that scalar 100 was adequate for representing the 
classes visualized in the images. It was possible 
to individualise targets such as small dams and 

large grasslands. 
For the study area, following the seasons at 

the South of Brazil, the crops presented high 
vegetative vigor in January and February and, in 
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the months of July to September, these areas 
began to be covered by winter pastures. From 
November onwards, the soil is generally bare as 
the preparation for crops sowing starts (MAPA, 
2015). In the work carried out in areas of the 
Argentinian Pampa, (Guerschman et al., 2003) 
found that the combination of images from 
November / December with January / February 

highlighted the croplands. Due to this agricultural 
calendar, the visible bands (green and blue) and 
the thermal band were associated to the RGB 
channels respectively, considering different 
dates (that is, January or February for the visible 
bands and November or December for the 
thermal band). Thus, it was possible to 
differentiate the classes easily (Figure 3). 

 
Figure 3 - RGB Compositions: a) RGB 4 3 2 with February bands; b) RGB 5 4 3 with February bands; c) RGB Band10 
3 2 with February bands; d) RGB 10 3 2 with the band 10 of December and bands 3 and 2 of February. (* The goal was 
to find the best composition to differentiate areas of grasslands, cropplands and woodlands). 

As an example, it was found that the cropland 
and woodland classes were not easily differen-
tiated in the February (F) composition (Figure 
3a). In composition 2 (Figure 3b), generally used 
for vegetation studies, the differentiation between 
classes has already improved. Associating the 
February temperature band with the R channel 
(Figure 3c) acentuated the grassland class. 
Contrarily, when adding the December thermal 
band (D) to the R channel, there was a higher 
differentiation between the classes. In figure 3d, 
it is possible to verify the difference between 
croplands (red color), woodlands (dark green) 
and grasslands (light green), which were not well 
differentiated in the previous compositions. The 

same findings ocurred in January/December and 
January/November compositions, although the 
combination of the February reflectance band 
and December thermal band presented higher 
differentiation for vegetation. 

The good performance of the compositions 
was confirmed after separability results obtained 
with Ecognition Feature Space Optimization 
tool, where it was possible to verify the best band 
combinations to differentiate grasslands, woodlands 
and croplands. When only the bands of the 
reflected spectrum (SR) were used (all dates), the 
separability between classes presented an appro-
ximate value of 2.67 (Figure 4). When adding the 
thermal bands, separation between classes increased  
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Figure 4 - Separability among classes according to bands combination. 

to 2.98. However, when considering only the 
thermal bands, the separability decreased to 0.87, 
that is, the thermal data added quality to the 
classification, but it cannot be considered as the 
main element. It is also noteworthy that the 
separability between classes presented the best 
result with the combination of images from 
different times of the year.  

For example, when considering only August 
SR bands, the separability approached 0.39, 
being increased to 1.30 with the inclusion of the 
February thermal band. In February SR bands, 
the separability increased from 0.86 to 1.79 when 
the thermal band of the December was added. 
Only the December SR bands presented 
separability of 0.65, with the thermal band the 
value was approximately 1.23. When considering 
the NDVI for the separability of the classes, the 
values were lower than those obtained in the 
combinations of the multispectral bands with the 
thermal bands. 

From the classes' separability results using 
different band combinations (findings described 

above), descriptors were defined. Descriptors are 
mathematical relationships that enhance attri-
butes of objects in the scene (Pinho et al., 2005). 
An example of a descriptor is the Simple Ratio 
vegetation index, defined from the ratio of the 
near-infrared band with the red band. In this 
sense, different mathematical combinations were 
tested until the descriptors that best discriminated 
the classes were chosen. 

It can be said that the borders of croplands are 
stable, however, the type of crop changes 
frequently (Blaschke, et al., 2000). Therefore, in 
times of high vegetative vigor, the temperature of 
vegetation is lower than temperature of bare soil 
(after harvesting and when preparing for the next 
crop). Thus, to classify the croplands, the descriptor 
1 (Table 2) was used, which considered the 
difference between the December and February 
thermal bands. The grasslands were identified 
using descriptor 2 (Table 2) from February bands 
2, 3, and 7 and the December thermal band. The 
descriptor 3 (Table 2), was used to classify the 
woodlands.

 

Table 2 - Descriptors used for classifying croplands, grasslands and woodlands. 
Descriptor  DN range Class 

D1 = b10 (dec) – b10 (feb) > 1.7 Cropland 

D2 = b2 + b3 + b7 (dec)/b10 (dec) 61 a 100 Grassland 

D3 = b2 (feb) + b7 (dec)/b10 (dec) 22 a 44 Woodland 
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Fourteen (14) study cells (Figure 5) were 
classified using the information provided by the 
descriptors (table 2) in the following order: (1st) 
using the descriptor for classifying woodlands, 
(2nd) grasslands, and (3rd) crops. Results 
showed grasslands covering most of the studied 
cells (38.7%), followed by croplands (36.7%) 
and woodlands in 11.81% of the total classified 
area. 

With the standardization of descriptors values 

for all cells, it was not possible to classify 100% 
of the study area, so at least 8% of the areas were 
not classified. With this finding, it can be inferred 
that the unclassified areas represent more 
heterogeneous coverage and that they do not 
present a common pattern to the three types of 
classes considered in the present study. An 
alternative for the classification of these areas 
would be to test new intervals for descriptors, 
which can be developed in future studies.

 

 
Figure 5 - Fourteen cells classified according to descriptors in table 2. 

A confusion matrix (Table 3) with user, 
producer and global accuracies values was 
generated. In general, it was found that the 
classification presented an excellent performance, 
with 86% of correct answers (Table 4). In this 
sense, it was found that the croplands class 
presented the greatest omission error (18%) in 

relation to the other classes, with user accuracy 
of 91.7% and producer of 81.6%, followed by the 
woodland class with 83.2% and 86.3% accuracy 
of the user and producer, respectively. It is 
noteworthy that the grasslands presented greater 
confusion with the croplands class, with lower 
omission error (7%) than the remaining classes.
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Table 3 - Confusion matrix for croplands, grasslands and woodlands. 

C
la

ss
ifi

ca
tio

n  Reference 
croplands grasslands woodlands Total 

croplands 535 35 13 583 
grasslands 92 469 13 574 
woodlands 28 5 164 197 
Total 655 509 190 1354 

 
 

Table 4 - Evaluation of the classification. 
User % Comission error % Producer % Omission error % 
91,77 8.23 81.68 18.32 
81,71 18.29 92.14 7.86 
83,25 16.75 86.32 13.68 

Global accuracy     0.86   
 

The results showed that the thermal band can 
contribute to the classification of land cover in 
Pampa, and in 92% of the cells classified, with a 
global accuracy greater than 85%. The inclusion 
of the thermal band can improve the accuracy of 
a classification by 5 to 6%11. It is also noteworthy 
that the object-oriented classification combined 
with the inclusion of the thermal band, especially 
considering the combination of images from 
different dates, can help to automate the 
classification of vegetated covers. 

On object-oriented classification methodology, 
previous studies (Zhang, & Xiao, 2007; Dornik 
et al., 2018; Blaschke, 2010) an increase in 
overall accuracy when compared to traditional 
ratings. For instance, from the reference survey 
on different types of classification, Blaschke 

(2010), pointed out that the object-oriented 
classifications presented accuracy greater than 
90%. When comparing different classifications 
in western Romania, Dornik et al. (2018) found a 

higher overall accuracy of 10% in object-
oriented classification in relation to pixel-by-
pixel classification. 

In relation to the thermal band, different 
works (Rodríguez Galiano et al., 2012; Eisavi et 
al., 2015; Zhao et al., 2019) highlighted the 
increased accuracy in land use and cover mapping 
after including this band in the analysis. For 
example, by combining the multispectral bands 
with the TM/Landsat 5 thermal band, Rodríguez-
Galiano et al. (2012) found a 10% increase in 
accuracy in the classification of land cover in the 
Province of Granada located in southern Spain. 
By using the thermal bands of the TIRS/Landsat 
8 sensor, Eisavi et al. (2015) found a 4% to 8% 
increase in land use classification accuracy in the 
city of Naghadeh, western Azerbaijan. 

Figure 6b shows that the areas with supressed 
vegetation had higher temperatures when compared 
to the 2016 image (Figure 6a), as a result they were 
identified as deforestation in 2018 (Figure 6c). 

 
Figure 6 - Comparison among TIRS / Landsat 8 temperature images and TerraBrasilis deforestation mask 2016 – 2018: 
a) LST of 11/24/2016 and deforestation mask 2016; b) LST of 12/16/2018 and 2016 deforestation mask; c) LST of 
12/16/2018 and deforestation mask 2016 and 2018. 
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Thus, it was verified the potential of the 
thermal band to discriminate areas where 
grassland vegetation was removed (converted to 
other use/cover) in the Brazilian pampa, both in 
automatic classification and visual analysis, 

when comparing the temperature images with the 
TerraBrasilis deforestation mask (resulting in 
85% overall accuracy). This fact demonstrates the 
applicability of thermal bands in environmental 
monitoring projects in Brazil and worldwide.

CONCLUSIONS 
The study demonstrated increased discrimi-

nation of vegetated classes in the Brazilian 
Pampa using the thermal data as surface 
temperature. Also, the use of thermal bands 
enabled the automatic classification of the 
selected areas in the Pampa biome with global 
accuracy of 86%. It is also noteworthy that the 
use of images from different times of the year, 
both surface reflectance and temperature, was 
decisive to identify and discriminate the objects 
generated from images segmentation. Allied to 
this, fuzzy pertinence functions demonstrated 
efficacy in object-oriented classification, as they 
allowed the attribution of values for each class 
from the choice of the best descriptors. 

In addition to the mapping of each previously 

defined class, the use of thermal bands allowed 
identifying areas of deforestation. According to this, 
it was found that deforestation areas can be 
detected by integrating existing deforestation masks 
with the segmented LST images (when considering 
the minimum and maximum values of the 
histograms of each image). The best timing for 
succeeding with this identification at the study 
area (South of Brazil) was when the soil was prepa-
red for sowing, around November and December. 

Therefore, it is recommended the use of 
thermal data for monitoring and mapping vege-
tation in the Pampa biome. For future work it is 
suggested to test the methods in different areas of 
the Pampa biome and whenever, as to account for 
diverse environmental characteristics.
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