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ABSTRACT - The total sampling-error attached to a set of samples has a central role in the selection of the statistical method to extract 
information from this noisy data. However, commonly direct measurements of the sampling error are not available and then, the 
magnitude of the error is unknown. In this article, we present a mathematically sound solution for estimating the sampling error directly 
from spatially correlated observations. The method is based on the difference between the global variance and the inferred y-axis 
intercept of the covariogram computed from the same data. We developed the mathematical proofs of the method, and its performance 
is analyzed by applying it to five variables from a stream-sediments dataset of a multi-element geochemical survey. The estimated total 
sampling error is satisfactory close to the value experimentally measured by field replicates.  
Keywords: Linear Regression. Covariogram. Sampling error. 
 
RESUMO - O erro amostral total associado com um conjunto de amostras tem um papel central na seleção do método estatístico a ser 
utilizado para extrair informação desses dados com ruído. No entanto, é comum que a magnitude desses erros amostrais seja 
desconhecida porque medições diretas desse erro não estão disponíveis. No presente artigo apresentamos um método sólido do ponto 
de vista matemático para estimar o erro amostral diretamente de observações especialmente correlacionadas. O método se baseia na 
diferença entre a variância global e a interseção do eixo-y do covariograma calculado para os mesmos dados. As provas matemáticas 
são desenvolvidas e sua performance é analisada ao se aplicar o método para cinco variáveis de amostras de sedimento corrente de 
uma campanha geoquímica multivariada. A proximidade entre o erro inferido e o valor experimentalmente medido por replicatas de 
campo foi satisfatório. 
Palavras-chave: Regressão Linear. Covariograma. Erro amostral. 
 

INTRODUCTION 
Geochemical surveys are an important part of 

geoscientific investigations in both mineral 
exploration and environmental monitoring. The 
quality of the decision-making is proportional to 
the quality of the available data. Thus, 
geochemical surveys have been adopting quality 
assurance and control programs (QA/QC) in over 
the last decades to measure and minimize the 
total-sampling errors. Understanding of the 
resulting total-sampling error associated with 
available datasets is fundamental to correctly 
manage them. In real-world datasets, however, 
commonly quality control data is not available 

and then, usually the sampling error is incorrectly 
assumed as null (Gy, 1982). Commonly 
consequences of assuming the data as free of 
errors are overlooked, such as slope bias in linear 
regression (Deming, 1943) or incorrect estimates 
performed by Kriging (Journel & Huijbreigts, 
1979; Isaaks & Srivastava, 1989). 

This article presents a mathematically sound 
approach for estimating the total-sampling error 
associated to spatially correlated data. It is based 
on the property that the underlying error-free 
process variance sums up with the total 
sampling-error variance, while the sampling 
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errors do not affect the covariogram for any 
distance h > 0. Therefore, we infer the total 
sampling-error variance as the difference of the 
covariogram y-axis intercept minus the measured 
global variogram. 

We organize this paper as follows: in Methods 
the sampling error model and the variance and 
covariance properties which the proposed 
approach relies on. The covariogram theory and 
its application discussed. We analyze the method 

performance by applying it to a dataset composed 
of 752 stream-sediment from the Bauru basin 
(São Paulo State – Brazil). The proposed-
approached estimates are compared to error 
experimentally measured by field replicates. The 
comparison results show the proposed approach 
as plausible when quality-control data is not 
available. The Discussion section illustrates the 
risks of assuming the available data as free of 
error without further analysis.

METHODS 
Estimating the sampling error 

The sampling errors εi are intrinsically 
associated with all (Gy, 1982). We cannot 
completely cancel the error εi, but it can be 
minimized through proper quality assurance and 
quality control program (QA/QC). The relationship 
between observations zi(u) of a given variable i, 
i=1,..,I and its underlying true value is Ti(u) is given 
by zi(u) = Ti(u) + εi, where εi is assumed as 

unbiased E{εi} = 0, uncorrelated with the 
geological process value Cov{εi, ti(u)} = 0, and has 
a variance Var{εi} = σ²i,error. 
Statistical Background - The sampling srror 
influence on variance and covariance 

The proposed approach relies on the properties 
that the global variance Var{zi(u)} is derived from 
the additivity between Var{Ti(u)} and σ²i,error 

(Equation 1). 
Var{Ti(u)+ εi}=Var{Ti(u)}+σ²i,error=Var{zi(u)}    (1) 

 
The covariance between two points separated 

by a distance h > 0 is not affected by εi when 
Cov{εi, ti(u)} = 0. It is due to the following bi-
linearity property (Equation 2). 

Cov{zi(u), zi(u+h)} = Cov{Ti(u)+εi,Ti(u+h) + εi} = Cov{Ti(u), Ti(u+h)}+Cov{Ti(u), εi}+Cov{εi, 
Ti(u+h)}+Cov{εi, εi} = Cov{zi(u), zi(u+h)} = Cov{zi(u), zi(u+h)} = Cov{Ti(u), Ti(u+h)}    (2) 

Therefore,  lim
𝒉𝒉−>0

𝐶𝐶𝐶𝐶𝐶𝐶{zi(𝐮𝐮), zi(𝐮𝐮 + 𝐡𝐡)}, tends 
to the error-free variance when their separation 
distance h tends to zero. When h = 0, we have 
Cov{zi(u), zi(u + h)} = Var{zi(u)}. 

In words, Equation (1) shows that the deviation 
between the measured and the error-free variance 
is due to the total sampling-error variance, while 
Equation 2 shows that the total sampling-error does 
not affect the measured covariance.  

Therefore, the covariance between two 
observations tends to their error-free variance value 

when their separation distance h tends to zero. It is 
valid only when the points are not exactly 
coincident (h = 0), because the covariance of value 
and itself is its variance and thus, affected by the 
total sampling-error variance. Considering the 
presented properties, we get: 

𝑉𝑉𝑉𝑉𝑉𝑉{Ti(𝐮𝐮)} ≅ lim
𝒉𝒉−>0

𝐶𝐶𝐶𝐶𝐶𝐶{Ti(𝐮𝐮), Ti(𝐮𝐮 + 𝐡𝐡)} 

Rearranging the equation above and considering 
Equation (1) and (2) equivalences: 
 

𝑉𝑉𝑉𝑉𝑉𝑉{Zi(𝐮𝐮)}  − σ²i, error ≅  lim
𝒉𝒉−>0

𝐶𝐶𝐶𝐶𝐶𝐶{Zi(𝐮𝐮), Zi(𝐮𝐮 + 𝐡𝐡)} σ²i, error ≅  𝑉𝑉𝑉𝑉𝑉𝑉{Ti(𝐮𝐮)}  −  lim
𝒉𝒉−>0

𝐶𝐶𝐶𝐶𝐶𝐶{Zi(𝐮𝐮), Zi(𝐮𝐮 + 𝐡𝐡)}  (3) 
 

Equation 3 is a relevant estimator of the total 
sampling error when quality-control data is not 
available. We present in the next section how to use 
an experimental covariogram to estimate the 
covariance when h tends to zero, hereafter referred 
to as lim

𝒉𝒉−>0
𝐶𝐶𝐶𝐶𝐶𝐶{𝐡𝐡}. 

Modelling the Experimental Covariogram 
The measure of spatial dependence, such as the 

variogram, covariogram, correlogram, among 
others, is the key to understand how the spatial 
correlation of the variable of interest behaves. For 

details, Isaaks & Srivastava (1989) describe 
methods for evaluating the spatial continuity of 
data. Among these, the covariogram measures the 
average similarity between two attribute values 
approximately separated by vector h: 

𝐶𝐶𝐶𝐶𝐶𝐶{𝐡𝐡}  =  
1

𝑁𝑁(𝐡𝐡)
� Zi(𝐮𝐮)Zi(𝐮𝐮 + 𝐡𝐡) −𝑚𝑚²
𝑁𝑁(𝐡𝐡)

 

Where N(h) is the number of pairs at a distance 
h from each other and m is the mean of the values 
Zi(𝐮𝐮). Figure 1 illustrates this naming convention 
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relative to the separation vector h in the isotropic 
case. In practice, we computed h with some lag 
tolerance because the number N(h) of pairs 
separated exactly at a distance h may be very small 
in a non-regularly spaced sampling grid. A general 
rule of thumb is to use the lag tolerance as half of 
the lag. 

The proposed approach requires defining the 
nugget effect from the experimental covariogram. 
For sake of simplicity, we recommend using an 
isotropic variogram as the nugget effect is an 
isotropic property. Moreover, the isotropic model 
maximizes the number of pairs and increases the 
model stability.  

The first 2 or 4 experimental points of the 
experimental covariogram are considered to define 
the nugget-effect fitting may be performed by 
visual analysis of, being these the most instructive 
to extrapolating the behaviour to the y-axis 
intercept. The value from lim

𝒉𝒉−>0
𝐶𝐶𝐶𝐶𝐶𝐶{𝒉𝒉} makes it 

possible to estimate σ²i,error through equation 3. 
Two interesting properties of the proposed 

approach are its robustness to outliers and to the 
presence of mixed populations related to different 
geological backgrounds: 

(i) The first occurs because outliers affect both 
variance and covariances and the gap between 
them stills roughly constant.  

(ii) The second property is that the influence of 
two or more mixed subpopulations tends to be 
small. It is because the nugget effect is commonly 
estimated using the initial lags and these are, in 
general, slightly affected by this mixture. The 
resulting nugget effect is an average statistic 
weighted by the number of pairs of each 
subpopulation in the initial lags. 

Next, we apply the proposed approach to a 
real-world dataset and compare its estimated 
error to the total error measured from field-
replicate samples.

 
Figure 1 - A) the spatial distribution of a set of samples inside each lag (black circles), B) the covariance between each pair of 
samples within lags (empty circles) and the average covariance of each lag in an experimental covariogram (black squares). The 
red line indicates the range of probable positions where the experimental data intercepts the y-axis. 

DATA PRESENTATION 
The proposed approach is applied to a set of 

stream-sediment samples from a multi-element 
geochemical survey entitled “low-density 
geochemical mapping in Brazil”. It was carried 
out in the São Paulo State by the Geological 
Service of Brazil (CPRM) between 2010-2013. 
Each sample was collected to represent a basin 
area between 100 and 200 km². Field replicates 
were collected with a rate of 10%. More details 
available in Mapa (2015). 
A brief geological overview 

The State of São Paulo is geologically inserted 
in the South American platform, being composed 
of rocks from Archean to the Holocene (Bistrichi 
et al., 1981). The State’s regional geology is 
divided into platform basement (AAC), which is 

mainly composed of crystalline pre-Cambrian 
metamorphic and igneous rocks that crop out in 
the east (Figure 2). Above AAC is the Paleo-
Mesozoic Parana basin, composed of sedimentary, 
volcanic and subvolcanic rocks. The present 
paper analyzes the stream-sediments samples 
were collected on the hydrographic network of 
the Bauru and Caiuá Groups (BBA) of the Bauru 
Basin (Milani et al., 2007). 

The Bauru Group crop out on six Brazilian 
states (São Paulo, Paraná, Mato Grosso, Mato 
Grosso do Sul, Minas Gerais and Goiás), and 
parts of Paraguay (Caiuá Formation). The Bauru 
Group is the Lower-Upper Cretaceous sedimentary 
sequence of the Paraná Basin. It predominantly 
comprises eolian sandstones in its Lower Creta- 
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Figure 2 – Schematic map of the Brazil main sedimentary basin and crystalline shields. The left-hand side figure zooms 
in the State of São Paulo area and its main geological domains, the red circles show places which stream-sediment samples 
were taken (Altered from Mapa, 2015).  
ceous sections and alluvial to fluvial conglome-
rates, sandstones, siltstones, and mudstones with 
subordinate lacustrine mudstones in its Upper 
Cretaceous sections. This package of rocks was 
deposited in a subsiding sedimentary basin, 
which developed in the central-southern South 
American Platform as a result of thermo-
mechanical subsidence following the opening of 
the Atlantic Ocean between South America and 
Africa (Fernandes & Ribeiro, 2015). 
The geochemical database – origin and 
exploratory analysis 

As presented by Mapa (2015), the dataset is 
composed of 1422 stream-sediment samples. 
The team collected the samples in active 
drainage channels, preferentially at linear 
stretches or spots with moderate turbidity with 
deposition of fine particles. For better 
homogenization, each sample was composited of 
subsamples collected at different spots along 
approximately 100 meters upstream of the 

drainage access. Each sample was collected 
with a plastic cup and the material retained on a 
1-mm mesh discarded. The remaining fine 
material was packed and identified. The 
sampled material was prepared and analyzed by 
Brazilian commercial laboratory SGS-GEOSOL. 
These samples were oven-dried at 50°C, sieved 
to <80#, sub-sampled and sieved again to <150#. 
The resulting pulp was digested by aqua regia 
and then analyzed by ICP-MS and ICP-AES 
(Inductively Coupled Plasma - Mass Spectrometry 
and Atomic Emission Spectrometry, respectively). 
Among the 32 available elements, the proposed 
approach is applied to five elements (Al, Co, Cu, 
Mn, and Zn). For sake of brevity, the study was 
carried out considering only five variables. 
However, the proposed approach is possible to be 
applied to any of the 32 variables with spatial 
correlation. Table 1 summarizes the statistics of 
the 752 samples from the Bauru basin area 
(Figure 2).

Table 1 – Summary table of stream-sediment samples. 
 Al Co Cu Mn Zn 

N. Samples 752 752 752 752 752 
Minimum 3 0.2 0.6 0.16 0.5 
1º quartile 16 1.9 3.8 1.84 4.0 

Median 32 3.9 8.2 3.29 9.0 
Mean 62.7 7.97 22.19 5.18 22.48 

3º quartile 78 10.07 22.77 6.32 24.0 
Maximum 581 93.1 277 100 260 
Variance 6006 104 1267 38.7 1081 

CV 2.4 2.61 4.34 1.88 3.65 
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Figure 3 shows the boxplot of the six variables 
under analysis. We may observe positively 
skewed distributions and a large distance 
between mean and median, where mean larger 

than the median is explained by the skewness and 
the presence of outliers. 

Next, we present the available field replicates 
and their statistics are compared to table 1 values. 

 
Figure 3 – Boxplot of the variables under study measured by stream-sediment samples. 

The geochemical database – field-replicate 
samples 

Replicates samples are defined by IUPAC 
(1997) as “Multiple (or two) samples taken under 
comparable conditions. This selection may be 
accomplished by taking units adjacent in time or 
space. Although the replicate samples are 
expected to be identical, often the only thing 
replicated is the act of taking the physical 
sample”. The Field Replicates (FR) used in this 
study were independently collected as close as 
possible of each other in space and time. Both 

samples are prepared and analyzed using the 
same procedures. The variance between FR 
allows to measure the errors that arise from 
sample acquisition in the field, which may 
contribute with over 80% of the total sampling 
error. The uncertainty may be measured from 
field replicates using different equations and 
metrics (Abzalov, 2011).  

In this article we compute the variances of the 
measurement errors σ²i,error from the difference 
between the variance of each observation set Zi 
and their covariance: 

σ²i,error = 0.5{Var Zi (x) + Var Z2 (x)} - Cov {Z1 (x), Z2 (x)}   (4) 
In words, we compute the total sampling 

error from field replicates as the difference 
between their average variance of each pair 

minus their covariance. Table 2 shows the 
statistics of the matched pair of FR from the 
Bauru Basin area.

 

Table 2 – Summary table of field replicates samples. 
 Al Co Cu Mn Zn 

N. Pairs 60 62 62 62 58 
Minimum 5.0 0.5 0.7 0.5 1.0 
1º Quartile 15.50 2.10 4.00 2.13 3.00 

Median 27 4.3 8.9 3.3 9.0 
Mean 54.3 7.7 24.9 5.3 24.2 

3º Quartile 70 10 21 7 17 
Maximum 241 44.4 277 23 260 

Variance Orig. 3147 71 1915 21 1787 
Variance Repl. 3000 51 1808 18 1504 

Covariance 2561 52.1 1753.4 16.3 1579 
Total Error 512 8.96 108.2 3.2 66.4 

Total Error (%) 16% 12.6% 5.6% 15.5% 3.7% 
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There are 62 pairs of field replicates for each 
available variable. The exception is the Al and Zn 
which some values were reported as “less than 
the limit of detection”. This is usually reported 
when an analytical procedure detects an element, 
but the value is too low to be accurately 
quantified.  

The distribution and statistics of original 
(Table 1) and control samples (Table 2) of the 
variables under study are similar and that FR 
samples are representative of the original data. 
Figure 3 shows the scatter-plot between each 
matched pair of values and their statistics. 

Next session we move forward to illustrate the 
proposed-approach, where the relationship 
between global data variance and the nugget 
effect of the covariogram are used to estimate the 
sampling error associated with a given spatially 
correlated variables. 
Estimating the sampling error from the 
variance – covariance relationship 

The experimental covariogram was fitted to 
the observations of each element under study 

using a lag separation distance of 14 Km, a lag 
tolerance and bandwidth of 7 Km, and an angular 
tolerance of 22.5º (Figure 4). The nugget effect is 
the only parameter of the covariogram model that 
is necessary to be defined. It was estimated by 
extrapolating the trend of the first 2-4 
experimental points to the y-axis intercept. The 
linear extrapolation (red line), the range of values 
where the y-axis intercept probably occurs 
(orange bar) and the actual covariance measured 
from field replicates (value highlighted by the 
green box). 

Next, we compare the proposed approach 
estimates and experimental total error values 
results. These values are compared in Table 3 
with experimental values measured by FR 
samples using equation 4. Figure 5 presents 
graphically the data summarized in table 3. 

The deviation between the experimental and 
the estimated error shows that the proposed 
approach is a reliable solution when direct 
measurements of the sampling error are not 
available.

 
Figure 4 – Experimental covariograms. The linear extrapolation (Red line), the range of values where is plausible to 
define the y-axis intercept (orange bar) and the actual covariance measured from field replicates (green-box value). 
Distances measured in fractions of 100 Km. 

Table 3 – Comparison between the total sampling relative to the total data variance, estimated from the proposed 
approach and experimentally from field-replicate samples. 

 Proposed 
Approach RF Samples 

Al 10.5% 6.3% 
Co 13.0% 14.6% 
Cu 2.0% 5.8% 
Mn 16.9% 16.5% 
P 11.5% 12.3% 

Zn 1.8% 8.7% 
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Figure 5 – Scatter plot between matched pairs of field replicates. In black, the y=x line. The red squares highlight the 
values classified as outliers. 

RESULTS 
We used the proposed approach to estimate 

the total sampling errors for each variable, 
considering the data variance (Table 1) and their 
inferred covariance (Figure 6) using the 
relationship σ²i,error = Var{zi(u)} - C(h) where h 
tends to zero.  

It is relevant to point out that the number of 
available FR samples is small (64) and that no 

outliers were removed, or robust methods used 
for original and FR samples, avoiding the chance 
of biased procedures or decisions on data 
treatment that can affect results.  

Next, we discuss how the measurement error 
impacts the results of many statistical methods 
widely used in geochemical survey data 
treatment and analysis 

 
Figure 6 – Relationship between error estimated by the proposed approach (X-Axis) and the error experimentally 
measured from Field-replicate samples (Y-axis). 
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DISCUSSIONS 
The correct estimate of the total-error variance 

of each variable (or set of variables) is of 
paramount importance in the methods and 
statistical tools selection. In this article we 
presented one mathematically sound method to 
estimate sampling errors when quality-control 
data are not available. In the presented case 
study, the novel approach results were 
satisfactorily close of the errors directly 
measured from field replicates. Now we move 
forward and discuss the importance of 
considering the presence of the sampling error in 
methods widely used in geosciences: 

Kriging (Matheron, 1963): The variogram 
nugget-effect is composed of the total-sampling 
error and micro-scale components (Cressie, 
1993, p. 59; Journel & Huijbreigts, 1978). The 
proportion between these two components 

determines the behavior of the kriging 
predictions at nodes spatially coincident and in 
regions with observations. However, the 
presence of sampling error is ignored, and the 
nugget effect is assumed to be fully composed of 
micro-scale variation. This decision constrains 
the kriging estimator to honor noisy 
observations. 

Figure 7 shows the underlying process (black 
line) and some observations associated with 
“sampling errors” (the dots).  

The solid colored lines are the kriging 
predictions and the dashed lines their kriging 
variance. The blue-green line was estimated 
considering a null nugget effect, while the red 
and blue lines were estimated considering the 
nugget effect fully composed of micro-scale or 
sampling error, respectively.

 

 
Figure 7 - Kriging predictions under three scenarios. In each scenario, the black line is the true underlying smooth process. 
Adapted from Paciorek (2008). 

The proposed approach allows the practitioner 
to estimate the nugget-effect composition from 
the total-error component. Next, we discuss 
methods how considering or not the sampling 
error leads to different regression lines. 

Linear-Regression models: A common step 
in the statistical data analysis of geological data 
is to find or show a relation between two or more 
variables. A method widely used is the least-
squares fitting, which relies on assumption that 
those regressors (y-axis data) are free of errors. 
This method, however, may not be adequate for 
fitting straight lines when both variables are 
subject to error. Classic studies about linear 
regression models with measurement error may 
be found in Deming (1943), York (1966). 

In figure 8 we compare the standard regression 
method to the Deming regression, which accounts 
for the ratio of the variance errors attached to obser-
vations on the x- and the y-axis. Under the assump-
tion of linear association between these variables, 

we apply both methods for defining the relation-
ship between Al and Co, Cu, Mn or Zn values. 

Figure 8 shows that the decision of considering 
or not the error attached to each variable is 
relevant and may lead to different results.  

The point of this discussion it not about the 
type of relationship between the variables, but 
that the decision of considering or not the error 
associated to variables must be carefully analyzed 
for each case and it is valid to any type of 
regression and equation fitting. We may extend 
the same discussions about the total sampling error 
to Principal Component Analysis, hypothesis 
testing, among other statistical methods used in 
geoscientific problems. 

We remind the reader that the good results 
were achieved using the covariogram in its 
original formulation and raw data without any 
treatment, outlier removal, or parameters indivi-
dually adjusted for each variable. However, we 
highly recommend in other real-world problems 
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to test statistical methods adequate for specific 
geological or statistical conditions, such as robust 

estimators or covariograms adequate for strongly 
skewed statistical distributions when necessary.

 

 
Figure 8 - Scatterplot between Al concentration against Co, Cu, Mn and Zn values. The red and blue dotted lines represent 
the regression equation fitted by Deming and Least-minimum squared methods, respectively. 

CONCLUSIONS 
In this study, we presented a novel approach 

to estimate the total sampling error associate with 
a dataset. It is a helpful alternative if 
experimental measurements are not available. 
The proposed approach is theoretically sound for 
manage spatially correlated observations. The 

mathematical proofs were corroborated by the 
presented case study, where the total-sampling 
error for five variables from a stream-sediment 
dataset estimates by the proposed approach and 
measured by field-replicates samples showed 
similar results.
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