

ISSN: 1980-900X (online)

GEOTERMOMETRIA DOS METAPELITOS DAS UNIDADES INTERMEDIÁRIAS DA NAPPE DE PASSOS (MG)

GEOTHERMOMETRY OF THE METAPELITES OF THE INTERMEDIATE UNITS OF THE PASSOS NAPPE (MG)

George William CLEMENCE JUNIOR¹, George Luiz LUVIZOTTO², Nayara de Macedo dos SANTOS¹

¹Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro, São Paulo, Brasil – Programa de Pós-Graduação em Geociências e Meio Ambiente. Avenida 24-A, 1.515. Bela Vista. Rio Claro – SP.

E-mails: george.clemence@unesp.br; macedo.santos@unesp.br

²Universidade Estadual Paulista. Instituto de Geociências e Ciências Exatas. Departamento de Geologia. Avenida 24-A, Bela Vista – Rio Claro – SP. E-mail: george.luvizotto@unesp.br

> Introdução Contexto geológico Contexto regional Nappe de Passos Metodologia Microscópio Eletrônico de Varredura (MEV) Microssonda Eletrônica (ME) Resultados Petrografia Geotermometria Zr em rutilo Discussões Conclusões Referências

Resumo - Na região de São Sebastião do Paraíso (MG), rochas metassedimentares de médio a alto grau metamórfico, entre 500 e 830 °C, da Nappe de Passos estão dispostas lateralmente em uma faixa de 14 km de comprimento, de leste a oeste, evidenciando gradiente metamórfico invertido em direção ao topo, com a presença de eclogito e granulito de alta pressão, e são interpretadas como contínuas. No entanto, essa associação pode indicar a presença de descontinuidade, levantando a possibilidade da nappe apresentar mais de uma unidade alóctone. O geotermômetro Zr em rutilo, utilizando pressão fixa em 10 kbar, indica temperatura entre $638 \pm 18^{\circ}$ C e $667 \pm 11^{\circ}$ C em rochas posicionadas tectonoestratigraficamente abaixo das ocorrências de retroeclogito, e temperatura entre $655 \pm 12^{\circ}$ C e $709 \pm 9^{\circ}$ C, para rochas acima. Quase todos os xistos metapelíticos apresentam semelhança mineralógica, textural, modal e de temperatura, indicando alto grau metamórfico, no entanto o topo da Unidade G possui assembleia mineral semelhante à das unidades superiores, porém com temperatura menor em 120 °C. O aumento do gradiente térmico ao longo das unidades estudadas comprova a presença de um gradiente metamórfico invertido para a nappe. No entanto nenhum salto de temperatura entre as unidades, posicionadas tectonoestratigraficamente acima das ocorrências de retroeclogito, foi observado. Entretanto, a diferença acima de 100 °C entre as Unidades G e H pode indicar a presença de descontinuidade geológica, provavelmente sendo resultado da associação do mecanismo de *underthrust* e subducção.

Palavras-chave: Termometria Zr em rutilo. Nappe de Passos. Orógeno Brasília Meridional.

Abstract - In the São Sebastião do Paraíso region (MG), medium to high-grade metamorphic metasedimentary rocks, ranging between 500 and 830°C, from the Passos Nappe are laterally arranged in a 14 km long, from east to west, highlighting an inverted metamorphic gradient towards the top, with the presence of high-pressure granulite and eclogite, and are interpreted as continuous. However, this association may indicate the presence of a discontinuity, raising the possibility of the nappe having more than one allochthonous unit. The Zr in rutile geothermometer, applying a fixed pressure of 10 kbar, indicates temperatures between $638 \pm 18^{\circ}$ C and $667 \pm 11^{\circ}$ C in rocks positioned tectonostratigraphically below the retroeclogite occurrences, and temperature similarities, indicating a high-grade metamorphism. However, the top of Unit G exhibits a higher-grade metamorphic mineral assemblage, like that of upper units but with a temperature 120 °C lower. The increase in thermal gradient across the studied units confirms the presence of an inverted metamorphic gradient for the nappe. Nevertheless, no temperature jumps between units immediately above and below the retroeclogite occurrences was observed. However, the over 100°C difference between Units G and H may indicate the presence of a geological discontinuity, likely resulting from a combination of underthrust mechanism and subduction. **Keywords:** Zr in rutile thermometry. Passos Nappe. Southern Brasília Orogen.

INTRODUÇÃO

A utilização de geotermômetros de elemento traço é de grande importância para o conhecimento da evolução da trajetória de rochas metamórficas e eventos geológicos, por meio do cálculo das condições de pressão e temperatura. Dentre os geotermômetros mais utilizados está o Zr em rutilo, que foi introduzido por Zack et al. (2004) baseado em análises de rutilos naturais de rochas metamórficas que apresentam temperatura entre 430 e 1.100 °C. Posteriormente, Watson et al. (2006) e Tomkins et al. (2007) realizaram análises experimentais em rutilo e aperfeiçoaram a calibração desse geotermômetro. Além disso, o uso de Zr em rutilo tem sido demonstrado em diversas rochas de alto grau metamórfico (Bakun-Czubarow et al., 2005, Spear et al., 2006; Zack & Luvizotto, 2006; Zhang et al., 2010).

Na região de São Sebastião do Paraíso (MG), as rochas metassedimentares da Nappe de Passos (NP) possuem aumento gradual do grau metamórfico, da fácies xisto verde a granulito, em direção a oeste (Luvizotto, 2003). As unidades da NP compreendem uma sequência plataformal depositada na margem oeste do Cráton São Francisco (Zanardo, 1992; Simões, 1995). Essa sequência apresenta gradiente metamórfico invertido onde, em direção ao topo, ocorrem as rochas de mais alto grau, como granulitos de alta pressão e eclogito retrogradado (Simões, 1995; Luvizotto, 2003; Luvizotto et al., 2011, 2012; 2014; Santos et al., 2021; Fumes et al., 2022; Simões et al., 2022).

A associação de granulitos de alta pressão e eclogitos é um forte indício de zona de subducção profunda de litosferas oceânicas e continentais (Black et al., 1994; Caby, 2003; Attoh & Morgan, 2004; Agbossoumondé et al., 2004). A ocorrência destas rochas é comumente associada a zona de sutura, resultante do fechamento de oceanos e formação de grandes cadeias de montanha em processos de orogenia (Ernst, 1981, 1988; Maruyama et al., 1986; Kurzt et al., 1998a, 1998b; Jin et al., 2001; entre outros). No contexto da NP, entretanto, a sequência de rochas de alto grau é interpretada pela ausência de descontinuidades entre as unidades (Simões, 1995; Luvizotto, 2003).

Assim, a ocorrência de granulitos e eclogitos pode marcar uma importante descontinuidade na sequência, contrastando com as interpretações anteriores e levantando a possibilidade da NP ser composta por mais de uma unidade tectônica alóctone. Portanto, o foco desse trabalho é apresentar as condições termométricas, por meio do geotermômetro Zr em rutilo, as rochas posicionadas tectonoestratigraficamente acima e abaixo das ocorrências de retroeclogito e discutir acerca de possíveis descontinuidades ao longo da NP.

CONTEXTO GEOLÓGICO

Contexto regional

O Orógeno Brasília Meridional é resultado da colisão entre os paleocontinentes São Francisco e Paranapanema e Arco Magmático de Goiás, no tardi-neoproterozoico, como parte da amalgamação do Gondwana Oeste (Almeida, 1977; Almeida et al., 1981; Dardenne, 2000; Valeriano et al., 2008; Valeriano, 2017).

O Orógeno Brasília é dividido nos segmentos Setentrional e Meridional, separados por uma zona de lineamentos estruturais de direção E-W, denominada de Sintaxe dos Pirineus (Araújo Filho, 2000). A porção Meridional, enfocada neste artigo, exibe um complexo sistema de nappes marcada por cavalgamentos em direção a leste. A oeste, essas nappes estão em contato com o Arco Magmático de Goiás, exposto localmente na região de Pontalina (GO) e na Nappe Socorro-Guaxupé. A região do extremo sul do orógeno é marcado por uma pronunciada concavidade para leste, sendo resultado da acomodação de terrenos acrescionários ao longo da margem oeste do Cráton São Francisco (Araújo Filho, 2000; Dardenne, 2000; Valeriano et al., 2008; Valeriano, 2017). Por possuir diferentes estilos estruturais, grau metamórfico e litoestratigrafia, diversos autores subdividem, da base ao topo (Valeriano, 2017) ou de leste a oeste (p.ex., Fuck et al., 1994; Dardenne, 2000; Valeriano et al., 2004; Valeriano et al., 2008), o Orógeno Brasília Meridional em três domínios: (i) Domínio Cratônico, representado pelo embasamento (> 1.8 Ga) expostos em meio a cobertura neoproterozoica do Grupo Bambuí; (ii) Domínio Externo, compreendendo depósitos sedimentares de margem passiva submetidas a metamorfismo de fácies xisto verde; e (iii) Domínio Interno, compreendendo metassedimentos de médio a alto grau metamórfico atribuídos ao Grupo Araxá, dispostos ao longo de um sistema de nappes neoproterozoicas, sendo uma delas a NP, escopo deste trabalho (Figura 1).

Nappe de Passos

De acordo com Simões (1995), a NP pode ser subdivida em nove unidades litoestratigráficas, sendo nomeadas de Unidade A até Unidade I, da base para o topo (Figura 2). Segundo o autor, as três unidades basais (A a C) representam o Ciclo Deposicional Inferior, sendo caracterizada por sedimentação matura, sendo representativa de um sistema plataformal proximal. São formadas por muscovita xisto, quartzito, lentes de mármore e raras ocorrências de rochas metabásicas. As Unidades D a I representam o Ciclo Deposicional

Figura 1 - Mapa tectônico do Orógeno Brasília Meridional e margem sudoeste do Cráton São Francisco. Em (A) reconstrução paleogeográfica do Gondwana Ocidental há 500 Ma. Modificado de Wang et al. (2019). Em (B) Províncias Estruturais Brasileiras. Modificado de Alkmin (2015). Em (C) mapa tectônico do Cráton São Francisco e Orógenos Brasília, Araçuaí e Ribeira, com destaque para a Nappe de Passos. Modificado de Marimon et al. (2020).

Superior, apresentando expressiva contribuição de sedimentos imaturos. Essas unidades compreendem biotita-muscovita gnaisse, (\pm granada) biotita gnaisse, (\pm cianita, \pm estaurolita) granadabiotita-muscovita xisto, quartzito e ocorrências de rochas metabásicas. Fumes et al., (2022) descrevem a ocorrência de granulito de alta pressão a partir da Unidade H, cuja assembleia

mineralógica estima temperatura e pressão na ordem de 800°C e 11,7 kbar.

As rochas da NP apresentam gradiente metamórfico invertido, variando da zona da biotita, em fácies xisto verde, na base, até fácies granulito, no topo (Figura 2). Dados termobarométricos e estruturais publicados por Simões (1995) e Simões et al., (2022), indicam que o gradiente

Figura 2 - Coluna litoestratigráfica da Nappe de Passos (segundo Simões ,1995 e modificado de Valeriano et al., 2004). metamórfico invertido da NP se deve pela inversão das isotermas em um sistema de subducção aliadas a intenso cisalhamento dúctil durante a exumação da nappe.

Na região de São Sebastião do Paraíso (MG), o metamorfismo na unidade basal da NP atingiu temperatura e pressão de 450°C e 6 kbar, enquanto para o topo as estimativas são da ordem de 830°C e 12 kbar (Luvizotto, 2003; Luvizotto et al., 2017; Fumes et al., 2022). Diferentes autores (p.ex. Santos et al., 2021, Fumes et al., 2022) propõem que as rochas da NP seguiram caminhamento de pressão e temperatura com sentido horário.

No limite entre as unidades E e F (Figura 3) ocorrem retroeclogitos (hornblenda-granada-piroxênio xisto) que atingiram temperatura de 725°C, com pressão mínima de 16 kbar, podendo, em estágios iniciais, ter atingido menor temperatura e maior pressão, sugerindo profundidade de subducção maiores que 60 km (Luvizotto, 2003; Santos et al., 2021).

Valeriano et al. (2004) apresentam dados cronológicos U-Pb (LA-ICP-MS e ID-TIMS) de zircão detrítico para as rochas do Grupo Araxá. Os autores indicam a presença de idades arqueanas e paleoproterozoicas, compatíveis com a ndo Simões ,1995 e modificado de Valeriano et al., 2004). erosão do Cráton São Francisco, idades mesoproterozoicas, entre 1200 e 1600 Ma, relacionadas a alguma fonte não identificada que pode estar sobreposta pelo Grupo Bambuí, e idades neoproterozoicas, principalmente entre 900 e 1.000 Ma, no entanto idades mais jovens (~600 Ma) são encontradas no topo dessas sequências e podem representar ambiente de antearco, relacionado ao Arco Magmático Socorro-Guaxupé (Valeriano, 2017). Espectros semelhantes de idades foram encontradas por Silva et al. (2019), porém os autores indicam que a idade máxima de sedimentação ocorreu em 907 Ma.

Dados U-Pb (ID-TIMS) em monazita do leucossoma sintectônico indicam idade de 630 Ma para o pico metamórfico da NP (Valeriano et al., 2004). Cristais de monazita em granulito foram analisados com microssonda eletrônica e idades similares de cerca de 630 e 640 Ma foram obtidas (Fumes et al., 2022). Segundo Valeriano et al. (2004), a exumação da NP é indicada por uma segunda geração de monazita, que apresenta idades U-Pb (ID-TIMS) com aproximadamente 605 Ma. Os autores também indicam a presença de idades intermediárias em monazita, entre 615 e 620 Ma, que são relacionadas a redefinição parcial do sistema U-Pb durante a exumação.

Figura 3 - Em (A) mapa geológico simplificado da Nappe de Passos com indicação da área mapeada. Em (B) mapa geológico da área de estudo com localização das amostras (Modificado de Luvizotto, 2003).

Idades U-Pb em rutilo, entre 595 e 580 Ma, são descritas em anfibolito (Valeriano et al., 2004), granulito de alta pressão (Fumes et al., 2022) e retroeclogito (Santos et al. 2021) da NP. Apesar dessas idades serem próximas ao erro das idades de monazita retrometamórfica, Valeriano et al. (2004) as interpretam como registros do resfriamento da NP, uma vez que também estão dentro da margem de erro dos dados de K-Ar em mica branca (580 – 570 Ma; Valeriano et al., 2000).

METODOLOGIA

Microscopia Eletrônica de Varredura (MEV)

Sete lâminas petrográficas polidas representativas dos xistos metapelíticos, amostras GL09, MG173 e MG175 da Unidade E e RR4A e SF3-41 da Unidade G, e paragnaisse, amostra MG182 da Unidade F, da NP (indicadas na Figura 3) foram analisadas em microscópio eletrônico de varredura (MEV) da marca JEOL, modelo JSM-6010LA com detector de espectroscopia por dispersão de energia (EDS), no Departamento de Geologia da Universidade Estadual Paulista (UNESP). O MEV foi configurado para operar com tensão de aceleração de 15 kV e distância focal de 10 mm. Foram realizadas análises qualitativas e semiquantitativas, caracterizações texturais e estruturais, e identificação de minerais acessórios, como o rutilo. As abreviações das nomenclaturas dos minerais utilizadas neste trabalho estão de acordo com Warr (2021).

Microssonda Eletrônica (ME)

Foram realizadas análises quantitativas em rutilo na Microssonda Eletrônica (ME) JEOL JXA-8230 *superprobe*, equipada com cinco espectrômetros de comprimento de onda (WDS), no Departamento de Geologia da Universidade Estadual Paulista (UNESP) de Rio Claro, para a obtenção da concentração de elementos maiores, menores e traço.

As análises quantitativas em rutilo foram realizadas sob condições de feixe de elétrons focado com aceleração de 20kV e corrente de 80 nA, utilizando os procedimentos propostos por Luvizotto et al. (2009) para a aquisição dos elementos Al, Si, V, Cr, Fe, Nb, Zr, Sn, Sb, Hf, Ta e W.

Petrografia

Unidade E

Três amostras representativas da Unidade E (GL09, MG173 e MG175) foram coletadas da base para o topo. Essas rochas compreendem cianita-granada-biotita-muscovita xisto feldspático (± estaurolita). São constituídas por quartzo, muscovita, plagioclásio, granada, biotita, cianita e estaurolita (Tabela 1 - Apêndice). Fases acessórias como apatita, ilmenita, magnetita, monazita, rutilo, zircão, pirita e turmalina também ocorrem. A assembleia encontrada é granada + plagioclásio + quartzo + muscovita + estaurolita + biotita + rutilo, marcando o pico metamórfico para a unidade.

A orientação da muscovita (0,1 a 2,0 mm) e biotita (0,1 a 0,8 mm) definem a foliação principal como xistosidade/clivagem de crenulação, a qual

Análises repetidas nos materiais de referência R10 e Sy (Luvizotto et al., 2009) foram utilizadas como controle de qualidade.

RESULTADOS

está presente nas rochas dessa unidade e nos níveis estratigráficos descritos nesse trabalho. Os níveis micáceos exibem trama lepidoblástica, com cristais subédricos a euédricos. A xistosidade também é marcada pela forma alongada dos cristais de quartzo (0,1 a 1,8 mm) e plagioclásio (0,2 a 1,0 mm). Os cristais de cianita (0,8 a 1,8 mm) e estaurolita (0,2 a 0,8 mm) apresentam coroas de alteração para muscovita, indicando reequilíbrio durante o retrometamorfismo (Figuras 4 A, B).

Porfiroblastos de granada (1,0 a 6.5 mm) apresentam textura poiquilítica, possuindo inclusões de biotita, apatita, pirita e clorita (Figura 4C). Alguns porfiroblastos de granada possuem foliação interna perpendicular à foliação externa, com formato em espiral, indicando origem sintectônica (Figura 4D).

Figura 4 - Fotomicrografia das amostras da Unidade E - MG175 (A), MG173 (B, D), GL09 (C). Em (A) cristal de cianita parcialmente alterado para muscovita. Em (B) cristal de estaurolita parcialmente alterado para muscovita. Em (C) porfiroblasto de granada com textura em atol, com inclusões de biotita, plagioclásio, pirita, apatita e clorita. Em (D) porfiroblasto sin-tectônico de granada com inclusões de quartzo, traços em vermelho indicam a foliação interna.

Unidade F

A amostra MG182 compreende granadabiotita paragnaisse (Figuras 5 A, B) da Unidade F. É constituída por quartzo, plagioclásio, feldspato potássico, biotita e granada (Tabela 2 -Apêndice), e como minerais acessórios ocorrem zircão, rutilo, ilmenita e magnetita. A amostra apresenta paragênese mineral contendo granada + plagio-clásio + quartzo + feldspato potássico + biotita + rutilo.

A rocha apresenta bandamento milimétrico a centimétrico, marcado pela alternância de bandas ricas em quartzo (0,1 a 1,8 mm), feldspatos (0,2

a 0,6 mm) e biotita (0,1 a 1,0 mm). Apresentam textura granoblástica lobulada, formada por cristais anedrais. Também ocorrem porfiroblastos de granada (0,4 a 5,0 mm) com textura poiquilítica, que possuem trilhas de quartzo e plagioclásio.

Figura 5 - Fotomicrografia da amostra MG182 da Unidade F. Em (A) vista geral da amostra com nicóis paralelos e em (B) com nicóis cruzados.

Unidade G

Três amostras da Unidade G (RR4A, MG176 e SF3-41) foram estudadas da base para o topo. As duas amostras próximas a base compreendem cianita-granada-biotita-muscovita xisto feldspático (Figuras 6 A, B e C). São constituídas por quartzo, muscovita, biotita, plagioclásio, granada, cianita e estaurolita (Tabela 3 - Apêndice) e minerais acessórios como apatita, ilmenita, magnetita, monazita, rutilo, zircão e turmalina estão presentes. A assembleia mineral principal observada é granada + plagioclásio + quartzo + muscovita + estaurolita + biotita + rutilo, semelhante ao da Unidade E.

Essas rochas são constituídas por quartzo (20 a 25%), muscovita (15 a 25%), biotita (10 a 15%), plagioclásio (10 a 15%), granada (10 a 15%), cianita (até 5%) e estaurolita (até 1%). Fases acessórias como apatita, ilmenita, magnetita, monazita, rutilo, zircão e turmalina também estão presentes. A assembleia do pico metamórfico para essas amostras é representada por granada + plagioclásio + quartzo + muscovita + biotita + rutilo, semelhante ao definido para a Unidade E.

Essas rochas possuem foliação penetrativa do tipo xistosidade, a qual é marcada pela orientação de muscovita e biotita, que geram trama lepidoblástica alongada, formada por cristais subédricos a euédricos com granulação fina a média.

Cristais de cianita e estaurolita apresentam coroas de alteração para muscovita, semelhante

ao encontrado na Unidade E.

Porfiroblastos de granada, das amostras RR4A e MG176, apresentam textura poiquilítica, principalmente por inclusões de quartzo, muscovita, ilmenita e magnetita, além de rutilo, zircão e monazita. Esses porfiroblastos possuem foliação interna perpendicular à foliação externa, com formato em espiral, indicando origem sintectônica (Figura 7). A amostra SF3-41, coletada próxima ao contato da Unidade H, compreende cianita-granada-biotita xisto feldspático (Figura 6D). É constituída por quartzo, plagioclásio, biotita, feldspato potássico, granada e cianita (Tabela 4 - Apêndice) e minerais acessórios, como rutilo, apatita, clorita, ilmenita, monazita e zircão também ocorrem. A assembleia mineral identificada é granada + plagioclásio + feldspato potássico + quartzo + cianita + biotita + rutilo.

A amostra exibe uma xistosidade, marcada por cristais subédricos de biotita (0,2 a 1,5 mm). Apresenta trama lepidoblástica alongada, formada por cristais subédricos a euédricos. Diferente dos demais xistos estudados, os cristais de cianita da amostra não possuem coroa de alteração para muscovita, além de maior granulação (1,0 a 4,0 mm). Outra distinção em relação as demais rochas é a ausência de muscovita.

Geotermometria Zr em rutilo

Foram realizadas análises de elementos traço em rutilo, na matriz ou inclusos em granada. Foram selecionadas três amostras da Unidade E

Figura 6 - Fotomicrografia das amostras da Unidade G – RR4A (A, C), MG176 (B), SF3-41 (D). Em (A) cristal de estaurolita parcialmente alterado para muscovita. Em (B) cristal de cianita parcialmente alterado para muscovita. Em (C) cristal de turmalina em camada quartzosa. Em (D) visão geral da amostra SF3-41 com biotita de maior granulometria e cristal de cianita sem alteração.

Figura 7 - Fotomicrografia de porfiroblasto sin-tectônico de granada da amostra MG176. Cristais de magnetita e ilmenita definem a foliação interna (linhas em vermelho), que apresenta padrão sigmoidal.

(GL09, MG173, MG175), uma da Unidade F (MG182) e duas da Unidade G (RR4A e SF3-41), totalizando 71 análises pontuais (Tabela 5 -Apêndice). Devido a ocorrência de zircão em alguns rutilos, as análises com concentrações elevadas de Si e Zr foram descartadas, seguindo as condições indicadas por Luvizotto & Zack (2009). Para a aplicação desse geotermômetro, foi empregada a calibração proposta por Tomkins et al. (2007). Foi utilizado o valor de 10 kbar para a pressão durante os cálculos de temperatura para cada amostra. Essa medida foi utilizada baseando-se na média dos teores obtidos por Simões et al., (2022) para rochas metamáficas e quartzitos das unidades estudadas. Os *outliers* positivos não foram considerados para o cálculo de temperatura das amostras, sendo utilizado apenas o maior valor para cada grupo de análise.

Unidade E

As amostras da Unidade E possuem rutilo incluso em granada ou na matriz, no entanto apenas na amostra MG175 os grãos de rutilo presentes na matriz foram analisados, uma vez que nas demais amostras esses cristais apresentaram concentrações elevadas de Si e Zr e foram descartadas, seguindo as condições indicadas por Luvizotto & Zack (2009), ou possuem tamanho menor que 20 μ m, não sendo possível realizar as análises.

A amostra GL09 contém cristais de rutilo na matriz ou inclusos em granada (Figura 8A). No geral, os grãos são subédricos, possuem tamanho menor que 100 μ m e textura límpida, mas também ocorrem lamelas de ilmenita. A concentração de Zr, nos rutilos inclusos em granada, varia entre 148 e 259 ppm (Figura 9A). A temperatura calculada é de 638°C ± 18°C (Figura 9B).

Figura 8 - Imagens de elétrons retroespalhados dos rutilos analisados. Em (A) rutilos da amostra GL09 inclusos em granada. Em (B) rutilo da amostra MG173 incluso em granada. Em (C) rutilo da amostra MG175 com inclusões de zircão. Em (D) rutilo da amostra MG182 com lamelas de ilmenita e incluso em granada. Em (E) rutilo da amostra RR4A com lamela de ilmenita e incluso em granada. Em (F) rutilos da amostra SF3-41 inclusos em granada. Marcação em vermelho indica local onde foi realizada análise química. Temperaturas calculadas utilizando pressão em 10 kbar.

Figura 9 - Diagramas de caixa (boxplot) das concentrações de Zr em rutilo (A) e da temperatura calculada (P @ 10 kbar). Limites superiores e inferiores (whiskers) definem o intervalo. Limites superiores e inferiores das caixas representam o terceiro e primeiro quartis, respectivamente. Reta dentro do retângulo indica a mediana, enquanto a letra "x" representa a média. Círculos representam os valores outliers. Número acima de cada caixa representa a quantidade de análises de cada amostra.

Os cristais de rutilo da amostra MG173 ocorrem na matriz e inclusos em granada (Figura 8B). Os cristais são subédricos, possuem tamanho médio de 100 μ m, podendo chegar a 200 μ m, e apresentam textura límpida ou com lamelas de ilmenita. O teor de Zr, em cristais de rutilo inclusos em granada, varia entre 141 e 296 ppm (Figura 9A). A temperatura calculada para a amostra é de 649°C ± 6°C (Figura 9B).

A amostra MG175 possui rutilo na matriz (Figura 8C) e inclusos em granada. Os cristais são subédricos, possuem tamanho médio de 150 μ m, chegando a 600 μ m, e apresentam textura límpida ou com lamelas de ilmenita. A concentração de Zr em cristais de rutilo da matriz varia entre 244 e 348 ppm, enquanto para os inclusos em granada esse valor está entre 237 e 370 ppm (Figura 9A). A temperatura calculada para a matriz é de 662°C ± 11°C, enquanto para os cristais inclusos é de 667°C ± 11°C (Figura 9B). *Unidade F*

A amostra MG182 apresenta cristais de rutilo inclusos em granada (Figura 8D) ou na matriz, no entanto apenas análises nos grãos inclusos foram realizadas, pois os rutilos da matriz apresentam tamanho menor que 20 μ m, impossibilitando a aquisição do dado. Os cristais de rutilo inclusos apresentam tamanho médio de 100 μ m, podendo chegar a 500 μ m, e apresentam textura límpida ou lamelas de ilmenita. A concentração de Zr nesses cristais varia entre 222 e 363 ppm (Figura 9A). A temperatura calculada para a amostra é de 665°C ± 12°C (Figura 9B).

Unidade G

Semelhante as amostras anteriores, apenas cristais de rutilo inclusos em granada foram utilizados. Na amostra RR4A os rutilos são subédricos, apresentam tamanho médio de 120 μ m e textura límpida ou com lamelas de ilmenita (Figura 8E). O teor de Zr nesses cristais de rutilo varia entre 222 e 400 ppm (Figura 9A). A temperatura calculada para a amostra é de 673°C \pm 8°C (Figura 9B).

A amostra SF3-41 apresenta rutilo na matriz ou incluso em granada (Figura 8F). Os cristais de rutilo são subédricos, possuem tamanho médio de 100 μ m, podendo chegar a 250 μ m, e textura límpida, podendo ter lamelas de ilmenita ou inclusões de zircão. A concentração de Zr nesses cristais varia entre 378 e 725 ppm (Figura 9A). A temperatura calculada para a amostra é de 709°C \pm 9°C, desconsiderando valores *outliers* (Figura 9B).

DISCUSSÕES

As informações acerca da temperatura para as unidades estudadas indicam aumento do gradiente térmico, de 638°C, na base da Unidade E, para 709°C, no topo da Unidade G, quando considerado apenas o maior teor de Zr para cada amostra, assumindo pressão a 10kbar.

Esses valores são próximos aos apresentados por Simões et al. (2022), que realizaram geoter-

mometria em quartzitos, utilizando os geotermômetros Zr em rutilo, e em rochas metamáficas, pelo geotermômetro de Otten (1984) (Figura 10). De acordo com os autores, a temperatura média para a Unidade E é 620°C para rochas metamáficas e 670°C para quartzitos, enquanto Unidade G possui em média 650°C para rochas metamáficas e 690°C para quartzitos.

Figura 10 - Variação da temperatura de acordo com a distância ao empurrão. Comparação entre os dados obtidos neste trabalho (triângulo verde) com quartzitos (losango azul) e metamáficas (quadrado laranja) da literatura. Número sobrescrito: 1 – Simões et al. (2022).

Considerando a localização das amostras e sua relação com a distância ao empurrão (Figura 10), têm-se que entre a base da Unidade E, amostra GL09 (638°C), e a base da Unidade G, amostra RR4A (673°C), possui aumento da temperatura de 35°C em uma distância de, aproximadamente, 1.400 metros. Essa pequena variação de temperatura, em relação a distância entre as amostras, também é observada na petrografia, onde as rochas da Unidade E e da base da Unidade G apresentam composição mineralógica, moda e texturas semelhantes (Figuras 4, 6A, 6B, 6C e 7).

Entre a base e o topo da Unidade G ocorre aumento de temperatura de 36°C em uma distância de aproximadamente 750 metros. Nessa unidade, além do maior acréscimo de temperatura em relação a base, também ocorrem diferenças petrográficas entre as rochas (Figura 6). A amostra SF3-41, representante do topo, não possui muscovita e halo de alteração em cianita, biotita em maior moda e apresenta feldspato alcalino, que não é presente em amostras anteriores. Essas características, e a temperatura de 709°C, indicam que essa rocha é representativa de fácies anfibolito superior, enquanto as demais estão em fácies anfibolito médio.

A concentração de Zr em rutilo nos xistos não possui grande dispersão em relação a sua localização, como na matriz ou incluso em granada. A única exceção é a amostra SF3-41, que possui teores de 378 a 725 ppm. Apesar de não apresentar grande variação na concentração do elemento, a característica de dispersão nos dados é comum em rochas de fácies granulito (p.ex., Luvizotto & Zack, 2009), que ocorrem em unidades superiores da NP e apresentam tal característica (Fumes *et al.*, 2022).

Fumes et al. (2022) indicam que a temperatura para os granulitos de alta pressão das Unidades H/I, por meio do geotermômetro Zr em rutilo, apresentam temperatura da ordem de 830°C, sendo superiores em aproximadamente 120°C da estimativa para a amostra SF3-41, localizada próxima ao contato com a Unidade H.

Dessa maneira, o aumento da temperatura, da base para o topo, das Unidades E a G indica que possíveis descontinuidades ao longo dessa sequência são improváveis, além de comprovar o gradiente metamórfico invertido para os metapelitos utilizando termometria não convencional. No entanto, entre as rochas do topo da Unidade G e da Unidade H pode ocorrer possível descontinuidade geológica, marcado por um salto de temperatura entre essas unidades.

A ocorrência de uma descontinuidade formada por zona de cisalhamento implicaria na ocorrência de trama milonítica no contato entre as Unidades G e H, o que não é observado na amostra SF3-41. Entretanto, no Orógeno Brasília Meridional zonas de cisalhamento miloníticas raramente estão preservadas, devido a sua formação próxima ao pico de temperatura das nappes, o que causa intensa recristalização e obliteração da trama milonítica (Fontainha et al., 2021). O truncamento entre as camadas das unidades estudadas (Figura 3) também seria indicativo de descontinuidade, porém tais estruturas não foram mapeadas, utilizando escala regional, na área de estudo.

Simões et al. (2022) discutem que a evolução tectonometamórfica da NP possa ser semelhante ao descrito para o Orógeno Himalaiano, que possui descontinuidades representadas por zonas de cisalhamento, dessa maneira indicando possibilidade da ocorrência de descontinuidades não mapeadas. Segundo Valeriano (2017), a ocorrência de zircões detríticos de 600 Ma, em unidades superiores do Grupo Araxá, como a Unidade H na NP (Valeriano et al., 2004), pode representar sedimentação sin-orogênica em um contexto tectônico de antearco, possuindo como fonte o Arco Magmático Socorro-Guaxupé. No entanto, Fumes et al., (2022) interpretam que todo o pacote metassedimentar da NP é derivado da margem passiva do Cráton São Francisco.

Por meio dos dados obtidos neste trabalho e as propostas da evolução da NP presentes na literatura (p.ex., Simões, 1995; Fumes et al., 2022; Simões et al., 2022), a possível descontinuidade, entre as Unidades G e H, se deu anterior ao período de exumação da NP, durante a subducção, dos metassedimentos, associado ao mecanismo de *underthrust*, que sobrepôs domínios mais quentes, como a Unidade H, sobre domínios mais frios, Unidade G, sendo semelhante ao proposto por Simões et al., (2022) para a inversão das geotermas.

CONCLUSÕES

A utilização de geotermometria de elemento traço em rochas metapelíticas é uma grande ferramenta para auxiliar na compreensão das condições térmicas do pico metamórfico. Os metapelitos das unidades intermediárias da Nappe de Passos apresentam aumento de temperatura da base da Unidade E, com 638°C, em direção ao topo da Unidade G, com 709°C. Esse aumento do gradiente térmico ao topo da sequência indica a presença de um gradiente metamórfico invertido para a nappe.

As variações da temperatura também são retratadas na mineralogia das amostras, em que as rochas da Unidade E (GL09, MG173 e MG175) e da base da Unidade G (RR4A) apresentam semelhanças mineralógicas, modais, texturais e de temperatura semelhante, representativas de fácies anfibolito médio. O topo da Unidade G (SF3-41) possui temperatura acima de 700°C e mineralogia distinta, de fácies anfibolito superior.

No entanto, apesar da variação térmica entre as amostras, nenhum salto de temperatura foi observado para as rochas das unidades intermediárias da Nappe de Passos. Entretanto, entre o topo da Unidade G e a Unidade H/I ocorre diferença acima de 100°C, podendo indicar a presença de descontinuidade geológica.

AGRADECIMENTOS

Os autores gostariam de agradecer ao apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

REFERÊNCIAS

- AGBOSSOUMONDÉ, Y.; GUILLOT, S.; MENOT, R.P. Pan-African subduction—collision event evidenced by high-P coronas in metanorites from the Agou massif (southern Togo). **Precambrian Research**, v. 135, p. 1–21, 2004.
- ALKMIN, F.F. Geological Background: A Tectonic Panorama of Brazil. In: VIEIRA, B.C., SALGADO, A.A.R. & SANTOS, LJ.C. (eds) Landscapes and Landforms of Brazil. Spring. Cap. 2., p. 9-17, 2015.
- ALMEIDA, F.F.M. O Cráton do São Francisco. **Revista Brasileira de Geociências**, v. 7, p. 349-364, 1977.
- ALMEIDA, F.F.M.; HASUI, Y.; BRITO NEVES, B.B.; FUCK, R.A. Brazilian structural provinces: An introduction. Earth-

492

Science Reviews, v. 17, p. 1-29, 1981.

ARAÚJO FILHO, J.O. The Pirineus Syntaxis: An example of the intersection of two Brasiliano fold-thrust belts in central Brazil and its implications for the tectonic evoluiton of western Gondwana. **Revista Brasileira de Geociências**, v. 30, p. 144-148, 2000.

ATTOH, K. & MORGAN, J. Geochemistry of high-pressure granulites from the PanAfrican Dahomeyide orogen, West Africa: constraints on the origin and composition of the lower crust. Journal of African Earth Sciences, v. 39, p. 201–208, 2004.BLACK, R.; LATOUCHE, L.; LIEGEÓIS, J.P.; CABY, R.; BERTRAND, J.M. Pan African displaced terranes in the Tuareg shield (Central Sahara). Geology, v. 22, p. 641-644, 1994.

- CABY, R. Terrane assembly and geodynamic evolution of central-western Hoggar: a synthesis. Journal of African Earth Sciences, v. 37, p. 133–159, 2003.
- DARDENNE, M.A. The Brasilia Fold Belt. In: Tectonic Evolution of South America. CONGRESSO INTERNACIONAL DE GEOLOGIA, 31, 2000, Rio de Janeiro. **Anais**...Rio de Janeiro: Sociedade Brasileira de Geologia p. 231–264, 2000.
- FONTAINHA, M.V.F.; TROUW, R.A.J.; DANTAS, E.L.; POLO, H.J.O.; SERAFIM, I.C.C.O.; FURTADO, P.C.; NEGRÃO, A.P. Reactivated shear zones: A case study in a tectonic superposition zone between the Southern Brasília and Ribeira orogens, southeastern Brazil. Journal of South American Earth Sciences, v.112, p.27, 2021.
- FUCK, R.A.; PIMENTEL, M.M.; SILVA, L.J.H.D. Compartimentação Tectônica na porção oriental da Província Tocantins: In: CONGRESSO BRASILEIRO DE GEOLOGIA, 38. Camboriú, 1994. Anais... Camboriú: Sociedade Brasileira de Geologia, 1994, v. l, p 215-216.
- FUMES, R.A.; LUVIZOTTO, G.L.; MORAES, R.; LANARI, P.; VALERIANO, C.M.; ZACK, T.; CADDICK, M.J.; SIMÕES, L.S.A. Petrochronology of high-pressure granulite facies rocks from Southern Brasília Orogen, SE Brazil: Combining quantitative compositional mapping, single-element thermometry and geochronology. Journal of Metamorphic Geology, v. 40, n. 3, p. 1-36, 2022.
- LUVIZOTTO, G.L. & ZACK., T. Nb and Zr behavior in the rutile dating high-grade metamorphism and retrogression: An example from the Ivrea-Verbano Zone. **Chemical Geology**, v. 261, p. 303-317, 2009.
- LUVIZOTTO, G.L. Caracterização metamórfica das rochas do Grupo Araxá na região de São Sebastião do Paraíso, sudoeste de Minas Gerais. 2003. Rio Claro. Dissertação (Mestrado) - Instituto de Geociências e Ciências Exatas da Universidade Estadual Paulista.
- LUVIZOTTO, G.L.; FUMES, R.A.; MORAES, R.; FERRAZ, E.R.M. P-T Constraints on High-Pressure Granulites from the Southern Brasilian Belt: Ti-Quartz and Zr-in-Rutile Thermometry. In: GOLDSCHMIDT 2017, Paris. Abstract... Paris: European Association Geochemistry, 2017.
- LUVIZOTTO, G.L.; SIMÕES, L.S.A.; DE SOUZA, D.M. Geothermobarometry of retro-eclogites from the Passos Nappe in São Sebastião do Paraíso - MG, Brazil. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 46, 2012, Santos. Anais... Santos: Sociedade Brasileira de Geologia, 2012.
- LUVIZOTTO, G.L.; SIMÕES, L.S.A.; MORAES, R.; DE SOUZA, D.M.; CARNEIRO, H.P. High-Pressure Granulite facies rocks from the Passos Nappe in São Sebastião do Paraíso. In: SIMPÓSIO DE GEOLOGIA DO SUDESTE, 12, 2011, Nova Friburgo. Anais... Nova Friburgo: Sociedade Brasileira de Geologia, 2011.
- LUVIZOTTO, G.L.; ZACK, T.; DE SOUZA, D.M.; SIMÕES, L.S.A.; SILVESTRE, M.D. Pseudosections and Zr-In Rutile Thermometry Applied to Granulite Facies Rocks From Passos Nappe, São Sebastião do Paraíso - MG. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 47, Salvador. Anais... Salvador: Sociedade Brasileira de Geologia, 2014.
- LUVIZOTTO, G.L.; ZACK, T.; TRIEBOLD, S.; VON EYNATTEN, H. Rutile occurrence and trace element behavior in mediumgrade metasedimentary rocks: example from the Erzgebirge, Germany. **Mineralogy and Petrology**, v. 97, p. 233–249, 2009.
- MARIMON, R.S.; TROUW, R.A.J.; DANTAS, E.L. Significance of age periodicity in the continental crust record: The São Francisco Craton and adjacent Neoproterozoic orogens as a case study. **Gondwana Research**, v. 86, p. 144-163, 2020.
- OTTEN, M.T. The origin of brown hornblend in the Artfjället gabbro and dolerites. **Contributions to Mineralogy and Petrology**, v. 86, p. 189-199, 1984.
- SANTOS, C.A.; LUVIZOTTO, G.L.; MORAES, R.; FUMES,

R.A.; ZACK, T. Metamorphism of retroeclogites from the Passos Nappe, Southern Brasilia Orogen. Journal of South American Earth Sciences, v. 112, p. 13, 2021.

- SILVA, A.J.C.A.; SIMÕES, L.S.A.; DUFRANE, S.A. Tectonic implications of U-Pb ages of detrital zircon grains in metasedimentary rocks of the northwestern sector of the Passos Nappe, southern Brasília Belt, Brazil. Journal of South American Earth Sciences, v. 95, p. 102293, 2019.
- SIMÕES, L.S.A. **Evolução tectono-metamórfica da nappe de Passos, sudoeste de Minas Gerais**. São Paulo. 1995. Tese (Doutorado), Universidade de São Paulo, Instituto de Geociências.
- SIMÕES, L.S.A.; SILVA, O.S.G.; FUMES, R.A.; LUVIZOTTO, G.L. Characterization of the inverted metamorphic gradient of the Passos Nappe (SE-Brazil) based on multiple geothermobarometers. Journal of South American Earth Sciences, v. 119, p. 103993, 2022.
- SIMÕES, L.S.A.; VALERIANO, C.M.; ZANARDO, A.; MORALES, N.; GOMI, C.; MORAES, R. Zonação metamórfica inversa do Grupo Araxá/Canastra na região de São Sebastião do Paraíso – Alpinópolis. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 35. Belém. Anais...Belém: Sociedade Brasileira de Geologia, v. 3, p. 1203-1216, 1988.
- TEIXEIRA, N.A. & DANNI, J. Contribuição à Estratigrafia do Grupo Araxá na região de Passos (MG). In: CONGRESSO BRASILEIRO DE GEOLOGIA, 30. **Anais**...Recife: Sociedade Brasileira de Geologia, 1978, p. 126.
- TOMKINS, H.S.; POWELL, R.; ELLIS, D.J. The pressure dependence of the zirconium-in-rutile thermometer. **Journal of Metamorphic Geology** v. 25, p. 703–713, 2007.
- VALERIANO, C.M. The Southern Brasília Belt. In: HEILBRON, M.; CORDANI, U.G.; ALKMIM, F. (Ed.). São Francisco Craton, Eastern Brazil. Regional Geology Reviews. Springer International Publishing, p. 189–203, 2017.
- VALERIANO, C.M., MACHADO, N., SIMONETTI, A., VALLADARES, C.S., SEER, H.J., SIMÕES, L.S.A. U-Pb geochronology of southern Brasília Belt (SE-Brazil): sedimentary provenance, Neoproterozoic orogeny and assembly of West Gondwana. Precambrian Research, 130, p. 27-55, 2004.
- VALERIANO, C.M.; PIMENTEL, M.M.; HEILBRON, M.; ALMEIDA, J.C.H.; TROW, R.A.J. Tectonic evolution of the Brasília Belt, Central Brazil, and early assembly of Gondwana. **Geological Society**, v. 294, p. 197-210, 2008.
- VALERIANO, C.M.; SIMÕES, L.S.A.; TEIXEIRA, W.; HEILBRON, M. Southern Brasilia belt (SE Brazil): tectonic discontinuities, K-Ar data and evolution during the Neoproterozoic Brasiliano orogeny. Revista Brasileira de Geociências, v. 30, p. 195-199, 2000.
- WANG, W.; CAWOOD, P.A.; PANDIT, M.K.; ZHAO, J.H.; ZHENG, J.P. No collision between Eastern and Western Gondwana at their northern extent. **Geology**, v. 47, n. 4, p. 308-312, 2019.
- WARR, L.N. IMA CNMNC approved mineral symbols. Mineralogical Magazine, v. 85, p. 291-320, 2021.
- WATSON, E.B.; WARK, D.A.; THOMAS, J.B. Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, v. 151, p. 413-433, 2006.
- ZACK T.; MORAES, R.; KRONZ, A. Temperature dependence of Zr in rutile: Empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, v. 148, p. 471-488, 2004.
- ZANARDO, A. Análise petrográfica, estratigráfica e microestrutural da região de Guaxupé-Passos-Delfinópolis (MG). Rio Claro, 1992. Tese (Doutorado), Universidade Estadual Paulista.

Submetido em 6 de julho de 2023 Aceito para publicação em 8 de dezembro de 2023

APÊNDICE

	rubbin 111 isbenioten innietar du Offidude E														
Amostra	Qtz	Grt	Ky	St	Ms	Bt	Plg	UTM W	UTM S						
GL09	± 25	± 15	± 4	± 1	± 25	± 10	± 20	304435	7686242						
MG173	± 30	± 10	± 3	± 1	± 28	± 10	± 15	306750	7689671						
MG175	± 28	±15	± 3	± 1	± 25	± 8	±17	306134	7689671						

Tabela 1: Assembleia mineral da Unidade E

Tabela 2: Assembleia mineral da Unidade F

Amostra	ostra Qtz Grt		Bt	Plg	Kfs	UTM W	UTM S
MG182	± 30	± 5	± 15	± 35	±15	306499	7691322

Tabela 3: Assembleia mineral da Unidade G

Amostra	Qtz	Grt	Ку	St	Ms	Bt	Plg	UTM W	UTM S
RR4A	± 25	±15	± 5	± 1	± 30	± 10	± 15	304374	7688867
MG176	± 30	±15	± 5	± 3	± 25	± 10	± 10	305433	7690112

Tabela 4: Assembleia mineral do topo da Unidade G

Amostra	Qtz	Grt	Ку	Bt	Plg	Kfs	UTM W	UTM S
SF3-41	± 25	± 10	± 8	± 10	± 20	±10	303433	7693399

Tabela 5 - Elementos traço e termometria em rutilo das Unidades E, F e G da Nappe de Passos. BD – Abaixo do limite de detecção.

Amostra	Unidade	Ponto	Textura	Si	Al	V	Sn	Cr	Sb	Ta	Fe	W	Hf	Zr	Nb	P (kbar)	T (°C)
GL09	E	Rt1	Incl Grt	612	90	1142	BD	322	BD	BD	6794	BD	BD	192	1943	10	615
GL09	E	Rt2	Incl Grt	1122	275	1167	95	308	BD	BD	BD	BD	BD	185	2013	10	612
GL09	E	Rt3	Incl Grt	360	275	1394	BD	287	BD	BD	5900	BD	BD	178	1992	10	609
GL09	E	Rt4-1	Incl Grt	BD	95	1443	95	322	BD	180	BD	BD	BD	192	2565	10	615
GL09	E	Rt4-2	Incl Grt	164	243	1235	71	294	BD	180	2759	BD	BD	163	2510	10	603
GL09	E	Rt4-3	Incl Grt	BD	106	1400	BD	301	BD	BD	2347	BD	BD	163	2447	10	603
GL09	E	Rt5-1	Incl Grt	182	339	1357	150	404	BD	BD	5154	190	BD	148	2810	10	596
GL09	E	Rt5-2	Incl Grt	122	212	1173	102	308	BD	BD	4337	BD	85	229	2006	10	629
GL09	E	Rt11-1	Incl Grt	BD	64	1560	126	294	BD	BD	1827	BD	BD	178	1566	10	609
GL09	E	Rt11-2	Incl Grt	388	42	1382	71	322	BD	BD	1796	BD	BD	296	1936	10	649
GL09	E	Rt11-3	Incl Grt	BD	48	1480	BD	315	BD	BD	1586	174	BD	259	2083	10	638
GL09	E	Rt12-1	Incl Grt	89	101	1179	87	239	BD	BD	2620	BD	BD	178	1866	10	609
GL09	E	Rt12-2	Incl Grt	42	64	1087	110	274	BD	BD	2293	BD	BD	155	1943	10	600
GL09	E	Rt12-3	Inc1 Grt	BD	64	1099	BD	239	BD	BD	2340	BD	BD	170	1908	10	606
MG173	E	Rt1-1	Incl Grt	570	85	1695	142	486	BD	BD	5053	238	BD	296	2817	10	649
MG173	E	Rt1-2	Incl Grt	757	69	1235	BD	554	BD	BD	4019	151	BD	141	1727	10	593
MG173	E	Rt1-3	Incl Grt	28	90	964	71	486	BD	BD	5651	143	BD	274	1181	10	642
MG173	E	Rt3-1	Incl Grt	70	550	516	BD	260	BD	BD	7967	270	BD	148	2796	10	596
MG173	E	Rt3-3	Incl Grt	42	106	854	71	527	BD	180	\$278	190	BD	178	3691	10	609
MG173	E	Rt3-4	Incl Grt	51	95	1192	BD	629	BD	BD	7734	190	BD	281	2335	10	645
MG175	E	Rt2-1	Incl Grt	BD	116	2125	126	739	BD	BD	BD	BD	BD	237	8885	10	631
MG175	E	Rt2-2	Incl Grt	BD	58	1499	102	889	BD	BD	BD	BD	BD	341	4963	10	660
MG175	E	Rt2-4	Incl Grt	47	138	1886	BD	541	BD	BD	7579	BD	BD	304	6564	10	651
MG175	E	Rt1-1	Incl Grt	BD	85	1093	71	192	BD	336	4563	BD	BD	318	2880	10	654
MG175	E	Rt1-2	Incl Grt	28	42	1824	79	BD	BD	BD	4128	BD	BD	370	412	10	667
MG175	E	Rt1-3	Incl Grt	BD	69	1136	95	171	BD	BD	BD	BD	BD	311	1293	10	653
MG175	E	Rt1-4	Incl Grt	56	79	1192	118	226	BD	BD	5760	BD	BD	311	1349	10	653
MG175	E	Rt1	Mtx	BD	32	2217	102	1197	BD	BD	1415	BD	68	304	2684	10	656
MG175	E	Rt2	Mtx	BD	64	2045	134	1245	BD	BD	1562	BD	BD	348	2684	10	633
MG175	E	Rt3	Mtx	631	48	1867	126	1074	BD	BD	1912	BD	BD	326	3062	10	653
MG175	E	Rt4	Mtx	654	95	1707	134	951	BD	BD	1632	BD	BD	244	3306	10	651
MG175	E	Rt5	Mtx	65	74	2101	110	773	BD	598	1632	BD	BD	311	3320	10	662

Tabela 5 - Elementos traço e termometria em rutilo das Unidades E, F e G da Nappe de Passos. BD – Abaixo do limite de detecção. *Continuação*.

Amostra	Unidade	Ponto	Textura	Si	Al	V	Sn	Cr	Sb	Ta	Fe	W	Hf	Zr	Nb	P (kbar)	T (°C)
MG182	F	Rt1-2	Incl Grt	BD	79	946	BD	1745	BD	BD	3933	BD	BD	222	1706	10	626
MG182	F	Rt1-3	Incl Grt	BD	58	1185	BD	1546	BD	BD	9600	BD	BD	244	2034	10	633
MG182	F	Rt1-4	Incl Grt	BD	37	1296	BD	1533	BD	BD	2736	BD	BD	326	1992	10	656
MG182	F	Rt2-1	Incl Grt	BD	26	1836	102	3038	BD	BD	2208	151	BD	222	1216	10	626
MG182	F	Rt2-2	Incl Grt	BD	26	1910	126	3182	BD	BD	3210	BD	BD	326	1279	10	656
MG182	F	Rt2-3-1	Incl Grt	360	138	1959	95	2347	BD	BD	\$71	BD	BD	333	762	10	658
MG182	F	Rt2-3-2	Incl Grt	444	106	1689	165	2299	BD	BD	1112	BD	BD	304	797	10	651
MG182	F	R2-3-3	Incl Grt	BD	BD	2125	126	2477	BD	BD	832	BD	BD	252	713	10	636
MG182	F	Rt3-1	Incl Grt	603	42	1376	142	267	BD	BD	2658	BD	BD	363	1286	10	665
MG182	F	Rt3-2	Incl Grt	BD	37	1542	126	862	BD	229	3016	198	BD	333	2901	10	658
MG182	F	Rt3-3	Incl Grt	56	58	1609	150	712	BD	BD	4773	BD	BD	355	1859	10	663
MG182	F	Rt4	Incl Grt	89	32	1824	134	787	BD	BD	1796	190	BD	222	1377	10	626
MG182	F	Rt4-1-1	Incl Grt	BD	37	1542	102	1047	BD	BD	1384	BD	BD	348	1091	10	662
MG182	F	Rt4-1-2	Incl Grt	BD	BD	1640	BD	1040	BD	BD	1345	BD	BD	333	1049	10	658
MG182	F	Rt4-1-3	Incl Grt	538	BD	1701	BD	1047	BD	BD	1112	BD	BD	333	1042	10	658
MG182	F	Rt4-1-4	Incl Grt	BD	BD	1689	118	766	BD	BD	2557	BD	BD	274	559	10	642
RR4A	G	Rt1-1	Incl Grt	BD	74	1843	BD	493	BD	385	10058	143	BD	252	\$361	10	636
RR4A	G	Rt1-3	Incl Grt	BD	69	1099	BD	465	BD	287	7711	159	BD	274	4026	10	642
RR4A	G	Rt1-5	Incl Grt	BD	53	1419	BD	465	BD	147	7890	BD	BD	400	1699	10	673
RR4A	G	Rt1-6	Incl Grt	33	79	1370	BD	486	BD	1163	12857	BD	BD	326	12023	10	656
RR4A	G	Rt1-7	Incl Grt	65	90	970	BD	547	BD	1376	12072	BD	BD	222	11884	10	626
RR4A	G	Rt1-8	Incl Grt	BD	79	1204	BD	493	BD	917	9133	BD	BD	274	9877	10	642
RR4A	G	Rt1-9	Incl Grt	BD	64	1290	BD	465	BD	483	14528	BD	BD	363	6103	10	665
RR4A	G	Rt1-10	Incl Grt	BD	69	946	BD	493	BD	426	7198	143	BD	304	5655	10	651
RR4A	G	Rt2-3	Incl Grt	61	79	1179	\$7	376	BD	BD	BD	BD	BD	392	3167	10	672
RR4A	G	Rt2-4	Incl Grt	BD	26	725	150	417	BD	BD	3218	174	BD	392	2027	10	672
SF3-41	G	Rt1	Incl Grt	575	37	1873	142	903	BD	BD	3436	182	BD	533	3146	10	698
SF3-41	G	Rt2	Incl Grt	603	101	1732	BD	944	BD	BD	4780	BD	BD	407	2293	10	675
SF3-41	G	Rt3	Incl Grt	BD	42	1591	126	951	BD	BD	3521	BD	BD	533	2237	10	698
SF3-41	G	Rt4	Incl Grt	42	53	1443	79	1054	BD	BD	3855	214	BD	496	2447	10	692
SF3-41	G	Rt5	Incl Grt	56	64	1400	87	1102	BD	BD	4827	182	BD	489	2524	10	691
SF3-41	G	Rt6	Incl Grt	51	58	1511	79	1108	BD	BD	4073	167	85	600	2545	10	709
SF3-41	G	Rt7	Incl Grt	42	254	1296	BD	308	BD	BD	BD	230	BD	378	3705	10	669
SF3-41	G	Rt9-1	Incl Grt	BD	37	1462	110	431	BD	BD	3397	174	BD	489	2656	10	691
SF3-41	G	Rt9-2	Incl Grt	28	48	1505	BD	438	BD	BD	3832	222	BD	489	2607	10	691
SF3-41	G	Rt10	Incl Grt	BD	37	1443	87	499	BD	BD	4174	135	BD	459	1692	10	685
SF3-41	G	Rt11	Incl Grt	47	48	1388	102	499	BD	BD	3785	BD	BD	725	1489	10	727
SF3-41	G	Rt12	Incl Grt	75	64	1106	71	465	BD	BD	BD	BD	59	422	1174	10	678
SF3-41	G	Rt14	Incl Grt	BD	37	1726	110	595	BD	BD	2744	214	BD	466	2852	10	687