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ABSTRACT —Lognormal dataare very difficult to handle because of its high variability due to the occurrence of afew high values. In
geostatistics the solution calls for a data transform, such as the logarithm transform and the indicator transform. Both approaches have
been used for estimating lognormal data. L ognormal kriging works on kriging the transformed dataand then estimates are back-transformed
into the original scale of data. Indicator kriging builds a conditional cumulative distribution function at every unsampled location and
estimates are based on the conditional mean or E-type estimate. Usually back-transformed lognormal kriging estimates are mean biased
and conditional meansfrom indicator kriging are unbiased. This paper compares both approachesfor 27 data sets presenting distributions
with increasing positive skewness. Actually 27 exhaustive data sets have been computer generated from which stratified random samples
with 90 points were drawn. Estimates were first examined for local accuracy and the associated uncertainties were checked for the
proportional effect. Results show that lognormal krigingisstill the best approach for lognormal dataif we use an agorithm that takesinto
consideration correcting the smoothing effect before back-transformation.

K eywor ds: lognormal distribution, lognormal kriging, indicator kriging, proportional effect.

RESUMO —J.K. Yamamoto & R. de A. Furuie- Umestudo sobre estimativa de dadoslognormais. Dados|ognormaissdo muito dificeis
de se trabal har devido a sua grande variabilidade por causa da ocorrénciade uns poucos val ores altos. Em geoestatistica a solugéo passa
pelatransformag&o dos dados, como atransformadalogaritmicae atransformadaindicadora. Ambas as aproximacoes tém sido utilizadas
para estimativa de dados lognormais. A krigagem lognormal trabalha sobre os dados transformados e ap6s isto as estimativas sdo
transformadas de voltaparaaescalaorigina dosdados. A krigagem davariavel indicadoraconstr6i umafuncao de distribui¢do acumulada
condicional em cada ponto ndo amostrado e as estimativas sdo baseadas na média condicional ou estimativa do tipo E. Geralmente,
estimativas por krigagem lognormal transformadas de volta para a escala original apresentam vieses em relacdo a média amostral e as
médias condicionais derivadas da krigagem da indicadora ndo so enviesadas. Esse trabalho compara ambas as aproximagdes para 27
conjuntos de dados apresentando distribuic¢des com assimetria positiva crescente. Na verdade, 27 dados completos foram gerados em
computador dos quais amostras al eatorias estratificadas com 90 pontosforam extraidas. As estimativas foram examinadasinicialmenteem
relagdo aprecisdo local e asincertezas foram verificadas para o efeito proporcional . Os resultados mostram que a krigagem lognormal é
aindaamel hor aproximacdo paradados|ognormais se usarmosaequacdo quelevaem considerago acorrecdo do efeito de suavizacdo antes
datransformadareversa

Palavr as-chave: distribuicdo lognormal, krigagem lognormal, krigagem daindicadora, efeito proporcional.

INTRODUCTION

Lognormal distributions are very common in
mineral depositsof rare metal's, diamonds, uranium and
other minerals. Thisdistribution is characterized by a
positive skewness in such a way that the mean is
greater than the median of the distribution. Data
displayinglognormal distribution present agreat number
of low valuesand afew high values. These high values
increase the variance of the data set and make the

task of semivariogram calculation and ordinary kriging
estimation difficult. Actually, experimental
semivariogramsare very sensitiveto these high values
and consequently are useless (Journel, 1983). Journel
(1983) proposed two solutionsfor this problem: trim
off high values or transform the original data using
functions such as square roots, natural logarithm or
normal scoretransform. Datatransformationisamuch
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better solution than trimming off high valued data. The
objective of datatransformisto obtain asymmetrical
distribution. Logarithm transformisagood option used
not only in geostatistics but also in other fields.
Transformed data are then used for computing and
modeling the semivariogram and for ordinary kriging
estimation. After that estimates in the transformed
domain are back-transformed into the original scale
of measurement. For ordinary lognormal kriging it
was proved that back-transformation after correcting
the smoothing effect of ordinary kriging estimates
is the best alternative to get unbiased results
(Yamamoto, 2007).

Another approach commonly used for lognormal
data was proposed by Journel (1983), based on the
indicator transform. According to thisapproach, instead

of estimating at every unsampled location, we build a
conditional cumulative distribution function (ccdf).
From this conditional cumulative distribution function
some statistics can be derived that are the conditional
mean or E-type estimate and the conditional variance
as well. It is important to note that the conditional
variance derived from the indicator approach is much
better than the traditional kriging variance, which is
considered asjust ameasure of the spatial configuration
of neighboring data (Journel & Rossi, 1989).

Theresultsfor both approaches can be compared
with each other in terms of unbiasedness, correlation
and errors of estimates versus real data. This paper
presents the results of acomparison between ordinary
lognormal kriging and indicator kriging for estimation
of lognormal data.

ORDINARY LOGNORMAL KRIGING

Lognormal kriging was proposed by Journel
(1980), who a'so proposed a back-transform equation
based on the kriging variance following the traditional
approach for computing the mean of lognormal data.
Origind dataaretransformed intologarithmsasfollows:

Y(x)=Log(Z(x)) @

By definition if therandom variable Z(x) follows
alognormal distribution then Y(x) will present anormal
distribution. Sometimesiit is necessary to use another
logarithm transform in order to guarantee that 50% of
transformed data are less than zero and the other 50%
are greater than zero. It can be done by dividing Z(x)
by itsmedian and then taking itslogarithm:

Y(x)= Log( Z(x) j )

Median

This transform does not change the shape of the
resulting frequency distribution but only guaranteesthe
symmetry of transformed data relative to zero.

In geostatistical estimation or simulation the
semivariogram model is the point of departure. The
experimental semivariogramiscomputed by using the
transformed values. Estimation at unsampled locations
can be made using ordinary kriging:

Yo (xc,):gz.v(xi) 3

Estimates at the unsampled locations are in the
logarithmic domain and so they need to be back-
transformed into the original scale of measurement.
Thetraditional formulafor back-transforming lognormal
kriging estimatesisbased on (Journel, 1980):

Z*OLK (Xo) = exp(Y(;K (Xo)+ 0'(2)K /Z—ﬂ)* Median (4)

However, this is where the main problem in
lognormal kriging appears since back-transformed
estimates are usually biased when compared with the
original data(Journel & Huijbregts, 1978). Biasof back-
transformed estimatesisreported in several papers(e.g.
Saito & Goovaerts, 2000) because expression (4) is
very sensitive to the semivariogram model.

A new approach was proposed by Yamamoto
(2007) in which the back-transform is performed after
correcting ordinary kriging estimates (equation 3) for
the smoothing effect (Yamamoto, 2005). Actualy, the
ordinary kriging estimator (equation 3) isnone other than
a weighted average formula and therefore its results
will present some smoothing. As a consequence, low
vauesareoverestimated and high va uesunderestimated.
Comparing the histogram of ordinary kriging estimates
with the histogram of transformed datait is possible to
realize that the lower and upper tails are lost in the
estimation process. Therefore, if wetry to back-transform
asmoothed histogram we will not get the original data
histogram. This is the main idea behind the approach
proposed by Yamamoto (2007), detail s of thisapproach
can be found in the referred paper. Thus, according to
Yamamoto (2007), ordinary kriging estimates can be
back-transformed by using:

Zi (%,) = exp(Yo, (%,)+ Yas, (%,))* Median  (5)

where Yyq (X, ) isthesmoothing error that isnegative

when overestimation occurs and positive otherwise.
Thisway estimates can then be back-transformed

into theorigina scale of measurement. But uncertainties

6
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remain in the logarithmic scale and so they cannot be
used. A new approach for back-transforming
uncertainties was proposed by Yamamoto (2008).
According to this proposal, the interpolation standard
deviation can be back-transformed as:

c = exp(YéK (x,)+s, )"Median -

6
- exp(YgK (x, ))k Median ©

INDICATOR

The indicator approach is based on the indicator
transform of the original dataasfollows (Journel, 1983):

(% zc):{lif Z(x)<z

0if Z(x)>z, ()
where z_is the cutoff grade or a reference value.

Themean of anindicator variableisthe probability
that the random variable is less than the cutoff grade:

m=E[l(xz.)]=P(Z(x)< z,) (8)

The variance of an indicator variable can be
written as;

var[l (x z,)]= E[1*(x 2. )| (E[I (x z.)))*

=m-m? =m(1-m)

Noting that E[I%(xz)|=E[l(xz)] the
variance can also be expressed intermsof probabilities:

Var[l(x z,)]= P(Z(x) < z, J1- P(Z(x) < z,)) =
_P(Z(X)< 2 )P(Z(x)> 2.) (10)

Withthisnew variabletheindicator semivariogram
is computed and modeled for the indicator kriging
approach. The indicator kriging estimator is (Journel,
1983):

LGz )= Y 00 (2 )= P23, )< z,) (1)

Thismeanswe are estimating the probability that
therandom variable at an unsampled location x isless
than the cutoff grade z. The uncertainty associated
with the indicator kriging estimate after (11) is as
follows:

Sj = i 7\*5 [I(xi; ZC)— I;K (xu ; ZC)]
i=1

(12)

where Y., (x, ) isthelognormal kriging estimate at an
unsampled location x_ and S is the interpolation
standard deviation (Yamamoto, 2000) inthelogarithmic
scale.

Itisimportant to note that we cannot simply obtain
theinterpolation standard deviation intheoriginal scale
of measurement by applying exp(S,)* Median.
Actually we have to add to it the term which brings
the uncertainty into the range of logarithmic values.

KRIGING

Actually thisistheinterpolation variance according
to Yamamoto (2000). Developing this expression
we get:

Sf = Zn: kilz (x,. ; zc)— (I;K (xn ; zc))
i=1

Note that thisis similar to expression (9). Thus,
theinterpol ation variance can beinterpreted asaproduct
of probabilitiesas shownin (10):

8% =P(Z(x, )< ze)P(Z(x, )= zc)

The same interpretation cannot be done with the
kriging variance because it depends on the
semivariogram model.

It is important to mention we are estimating the
probability for just a cutoff grade. However, if we are
interested in building a conditional cumulative
distribution function we need to estimate the probability
for several cutoff grades. Therefore, we have to split
the original data distribution into a number of cutoff
grades in such away that we can build a conditional
cumulative distribution function. Just for illustration
purposes Table 1 shows some the first and the last
percentiles for a number of cutoff grades.

(13)

TABLE 1. Sampledintervalsof thedistribution
after splitting into a number of cutoff grades.

Nb. cutoff pel!:cltr:\ttile pe:;aeitt“e
9 10 920
19 5 95
39 25 97.5
49 2 98
79 1.25 98.75
99 1 99
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As we can see, even when dividing the original
distributioninto 100intervals (or 99 cutoff grades), only
98% of the data are considered for building the
conditional cumulative distribution function.

If we choose 19 cutoff grades, it means we have
to compute and model 19 indicator semivariograms.
Besides, indicator semivariograms computed for cutoff
grades representing the tails of the distribution will
present great statistical fluctuations. For example, if
thefirst percentileis 5% wewill have only 5% of data
equal to one and 95% equal to zero. Therefore, only
5% of the datawill form pairs (the squared difference
must be greater than zero) that can be considered in
the semivariogram computation. The same happensin
the upper tail, in which 95% of data will be equal to
one and 5% equal to zero. Once again, only 5% of the
data will form pairs for semivariogram calculation.
Other than that, often we have problems for building
the conditional cumulative distribution function mainly
when order relation occurs (Hohn, 1999).

Thus, a practical solution for this problem was
proposed by Deutsch & Journel (1992) whichisbased
on the medianindicator semivariogram. Thisisthe best
semivariogram because 50% of data are equal to one
and the other 50% equal to zero, meaning all datawill
form pairsfor semivariogram computation. Themedian
indicator semivariogram is used for all other cutoff
grades and order relation will never occur. This
approach will beconsidered inthis paper. For illustration
purposes let us consider a conditional cumulative
distribution function presented in Figure 1.

i*(Xo; 2C4)

i*(Xq; 2C3)
i*(Xq; 2Cy) 7/
i*(Xq; 2C1) ——

zC, 2C, 2C; zC, ZCs 2Cgy 2ZC; ZCs ZCq

FIGURE 1. Illustrating aconditional cumulative
distribution function built from 9 deciles.

From the conditional cumulative distribution
function we can derive two statistics: the conditional
mean or E-type estimate (Deutsch & Journel, 1992)
and the conditional variance:

K _
2363 sz e ) (19
i=2

07(0)= 3 (e iz ) iz, o - 226:,)) (49

The great advantage of this method is that the
conditional mean and the conditional variance derived
fromtheconditional cumulativedistribution function are
in the original scale of measurement.

MATERIALS AND METHODS

In this section we want to show how synthetic
data can be computer generated. What we need is the
spatial distribution of arandom variable. For instance
we can start from the well known public domain data
set named true.dat (Deutsch & Journel, 1992). This
data set presents two variables named: primary and
secondary. Since the primary variable is a ssmulated
variable, it was chosen to work with the secondary
variable. Then this secondary variable from true.dat
wastransformed into anormal distribution N(0,1) using
the procedure described in Deutsch & Journel (1992).
Figure 2 showsthe original secondary variable and the
normal score transformed new variable. Since the
original datarepresent a spatial phenomenon, we can
consider them as an exhaustive set of data or aknown
population.

We can check parametersfor both populations as
givenin Table 2.

Population parameters (Table 2) confirm a
Gaussian distribution after the normal scoretransform

of the secondary variable from true.dat (Deutsch &
Journel, 1992).

From this normal score transformed variable we
can derive a lognormal distribution by raising e
(2.71828) to a power equal to the normal score:

Ziog = XP(Z,) (16)

By definition we have an exact lognormal
distribution because if we take the logarithm of Z
we have VA which presents a normal distribution.
Figure3illustratesatypical lognormal distribution.

Population parameters for the new random
variable Z, o which presents a typical lognormal
distribution, are presented in Table 3.

In Table 3 we can observe that a coefficient of
variation equal to 1.254 means a typical lognormal
digtribution.

If we multiply the random variable Z

Gauss

by a

8
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constant K (K > 1) in equation (16) wewill obtain other
lognormal distributions, but if the constant K is less
than one, other positively skewed distributions with
coefficients of variation lessthan 1.254 are generated.

Z

=exp(Z,,. *K *0.1) (17)

Logy Gauss

Inequation (17) wemultiply K times0.1insucha
way we can use K as an integer constant. Starting
from K equal to 1 to K equal to 27 we will have 27
synthetic exhaustive data sets. Just for illustration
purposes we show only population parameters (Table
4) and image maps for K=1 and for K=27 (Figure 4).

In Figure 4 (B) we cannot see anything but two
spots showing higher values. The color scaleisdivided
into arithmetic scale in such away that practicaly all
of the areais painted red.

Now we have 27 exhaustive data sets representing
27 different spatial phenomena. From these exhaustive
data sets we have drawn a sample based on the
stratified random sampling technique. Moreover, all
samples havethe samelocationsasshownin Figure5.

50 102.70000

40

30

51.35500

20

0.01000
20 30 40 50

Summary statistics for all 27 samples are
presented in Table 5.

Regarding semivariogram models we have to
compute experimental semivariogramsfor all logarithm
transformed data and only one semivariogram for the
indicator variable. Semivariogram model sfor logarithm
transformed data look like the semivariogram model
shown in Figure 6, with arange equal to 12 and sills
scaled according to the constant K. Table 6 presents
sills for all semivariogram models for logarithm
transform data.

Thesemivariogram modd for theindicator variable
(Figure 7) is the same for all samples because all
samples have the same location and data points were
calculated using equation (17).

This paper intends to compare both approaches
intermsof local precision and associated uncertainties.
Both lognormal kriging and indicator kriging wererun,
by which we wanted to estimate a regular grid of 50
by 50 nodesthat isexactly equal to the exhaustivegrids.
Instead of 2500 nodes, we estimate 2290 nodes|ocated
within the convex hull (Figure 8).

50 3.35291

40

30

0.00000

20

0 -3.35291

0 10 20 30 40 50

FIGURE 2. Image map of the secondary variable (A) and of the normal scoretransformed variable (B).

TABLE 2. Population parametersfor the secondary
variable and after normal scoretransform.

Parameters Ssgcr’iggf;y Normal score
N 2500 2500
Mean 2.580 0.000
Standard deviation 5.151 0.997
Coef. variation 1.996 Undefined
Maximum 102.70 3.353
Upper quartile 2.555 0.674
Median 0.959 -0.001
Lower quartile 0.333 0.675
Minimum 0.010 -3.353
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28.58567

TABLE 3. Population parametersfor the new random
variable presenting lognormal distribution.

Parameters Z0g

N 2500

1431033 Mean 1.640

Standard deviation 2.057

Coef. variation 1.254

Maximum 28.586

Upper quartile 1.961

Median 0.999

0 10 20 30 40 50 00358 Lower quartile 0.509
Minimum 0.035

FIGURE 3. Imageof atypical lognormal distribution.

‘ | ]
- W
-
10 20 30 40

5

Aé

1.39835

0.71513

0
0 10 20 30

40

0.00012
50

8542.80548

4271.40280

FIGURE 4. Image mapsfor exhaustive data sets generated after expression (16) with K=1 (A) and with K=27 (B).

SOr—=—+ + +
+ +
. s + + +
TABLE 4. Population parametersfor K =1 andfor K =27. 0 + s +
+ +
+ + AR
Parameters Zyog1 Z,og27 " + M + +
N 2500 2500 30 + + o
+ + + + o+
Mean 1.005 30.368
+ + o+t 7 W
Standard deviation 0.100 246.236 + +
+
Coef. variation 0.100 8.108 20 . + + +
Maximum 1.398 8542.805 * * . . e
+
Upper quartile 1.070 6.163 + Tty i
Median 1,000 0.999 101 * *a + *
+ + + A
Lower quartile 0.935 0.162 i
Minimum 0.715 0.000 o, N . 4 7
0 + +
0 10 20 30 40 50

FIGURE 5. Location map for samplesdrawn from
exhaustive data sets (sample size = 90).
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TABLE 5. Summary statisticsfor samples drawn from exhaustive data sets
(all samplesare composed of 90 data points).

Var Mean Sdv (37} Max uQ Med LQ Min
ZLog1 1.001 0.093 0.093 1.246 1.052 0.998 0.933 0.772
ZLog2 1.010 0.189 0.187 1.552 1.108 0.996 0.871 0.596
ZLog3 1.028 0.291 0.283 1.933 1.166 0.995 0.813 0.460
ZLog4 1.056 0.403 0.382 2.408 1.227 0.993 0.759 0.355
ZLog5 1.093 0.530 0.485 3.000 1.291 0.991 0.708 0.274
ZLog6 1.142 0.676 0.592 3.738 1.359 0.990 0.661 0.211
ZLog7 1.202 0.848 0.705 4.656 1.431 0.988 0.617 0.163
ZLog8 1.277 1.053 0.825 5.801 1.506 0.986 0.576 0.126
ZLog9 1.367 1.299 0.950 7.226 1.586 0.984 0.537 0.097
ZLog10 1.476 1.597 1.082 9.002 1.669 0.983 0.502 0.075
ZLog11 1.606 1.959 1.220 11.214 1.757 0.981 0.468 0.058
ZLog12 1.761 2.401 1.364 13.970 1.850 0.979 0.437 0.045
ZLog13 1.945 2.941 1.512 17.404 1.948 0.977 0.408 0.034
ZLog14 2.165 3.604 1.664 21.681 2.051 0.976 0.381 0.027
ZLog15 2.427 4.416 1.820 27.009 2.160 0.974 0.355 0.021
ZLog16 2.739 5.415 1.977 33.647 2.274 0.972 0.332 0.016
ZLog17 3.112 6.643 2.135 41.915 2.395 0.971 0.309 0.012
ZLog18 3.557 8.153 2.292 52.216 2.522 0.969 0.289 0.009
ZLog19 4.090 10.013 2.448 65.049 2.656 0.967 0.270 0.007
ZLog20 4.729 12.305 2.602 81.035 2.797 0.966 0.252 0.006
ZLog21 5.495 15.128 2.753 100.951 2.946 0.964 0.235 0.004
ZLog22 6.417 18.617 2.900 125.760 3.103 0.962 0.219 0.003
ZLog23 7.526 22.904 3.043 156.667 3.268 0.960 0.205 0.003
ZLog24 8.865 28.202 3.181 195.169 3.443 0.959 0.191 0.002
ZLog25 10.481 34.741 3.315 243.133 3.626 0.957 0.178 0.002
ZLog26 12.436 42.814 3.443 302.885 3.820 0.955 0.166 0.001
ZLog27 14.804 52.784 3.566 377.321 4.024 0.954 0.155 0.001

o
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SEMIVARIOGRAM

o
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0.44

0.22

0.00
0 5 10 15 20 25

DISTANCE

FIGURE 6. Semivariogram model computed for K=10
(lognormal data) after logarithm transform.

TABLE 6. Sill values according to the constant K.

K Sill K Sill K Sill

1 0.00831 10 0.85092 19 3.08402
2 0.03424 11 1.02732 20 3.39226
3 0.07724 12 1.22928 21 3.76525
4 0.13571 13 1.44705 22 4.10953
5 0.21656 14 1.65888 23 4.49576
6 0.30501 15 1.91092 24 4.88800
7 0.41587 16 2.16976 25 5.29681
8 0.54544 17 244217 26 5.73418
9 0.68831 18 2.75343 27 6.18572

Sdo Paulo, UNESP, Geociéncias, v. 29, n. 1, p. 5-19, 2010

11



<
N
©

o
N
w

SEMIVARIOGRAM
o
3

0.12

0.06

0 5 10 15 20 25
DISTANCE

FIGURE 7. Semivariogrammodel
for themedian indicator variable.
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FIGURE 8. Regular grid within the convex hull,
calculated after Yamamoto (1997).

RESULTS AND DISCUSSION

First of all the results for lognormal kriging
estimates are shown. Actually, back-transformed
estimates after expressions (4) and (5) are examined.
Tables 7 and 8 present summary statistics for back-
transformed lognormal kriging estimates.

Next, the results for indicator kriging that is the
conditional mean (E-type estimate) calculated as
equation (14), are shown. Summary statistics for E-
type estimates are shown in Table 9.

Thus we want to know how different methods
work when compared to the samples. Actually, the
samples aretaken asarepresentation of the popul ation
that is the object of study and therefore the closer the
estimates are to the sample data the best inference we
can do about the population. Figures 9, 10 and 11 show
box plots for back-transformed lognormal kriging
estimates after equation (4), after equation (5) and E-
type estimatesfrom conditional distributionsbuilt from
indicator kriging approach, respectively.

Comparing equations (4) and (5) it is possible to
verify that Journel’ s approach (Journel, 1980) produces
estimatesthat are mean biased asreported in literature
such as (Journel & Huijbregts, 1978). However, the
median of back-transformed estimates are not biased.
Moreover, these estimates do not reproduce the full
variability of data sets. The approach after Yamamoto
(2007) presents the best results, reproducing al basic
statistics as close as possible to the sample data.

Examining Figure 11 itispossibleto assert that E-
type estimates present means very closeto the sample
means. However, medians are strongly biased because
of thelossof information onthelower tail (seeminimum

values). The upper tailsof distributions are reasonably
well reproduced by the indicator approach.

We can compare the different approaches by
comparing their cumulative frequency distributions.
Actually, just the back-transformed lognormal kriging
estimates after equation (5) and E-type estimates
derived from the indicator kriging approach are
compared to sample data because of limitationsin the
computer program used for three distributions. Instead
of showing all 27 sampleswe present six samples that
illustrate the performance of different approaches for
estimating lognormal data (Figure 12).

Figure 12 just reconfirms what was seen in
previous figures, which is that the best approach is
provided by the back-transformed estimates after
equation (5). Although E-type estimates are not mean
biased, distributions get further from the sample
distribution as the coefficient of variation increases.
Therefore, lognormal kriging seems to be the best
approach for lognormal data. However, it is clear that
this approach presents best results after correcting the
smoothing effect of ordinary kriging estimates by the
use of equation (5).

Since we departed from exhaustive data sets we
know thereal value at every estimated location. Thus,
we can compare estimates in terms of local precision
by computing correlation coefficients, RMS errors,
mean errors and mean absolute errors (Figure 13). In
termsof correlation coefficientstheindicator approach
shows the lower values and between the two
approaches for back-transforming estimates equation
(5) provides better correlations for data sets 1 to 12

12
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TABLE 7. Summary statisticsfor back-transformed lognormal kriging estimates after equation (4).

Var Mean Sdv cv Max uQ Med LQ Min
ZLog1 0.996 0.057 0.058 1.226 1.034 0.997 0.956 0.790
ZLog2 0.996 0.115 0.116 1.502 1.069 0.993 0.913 0.623
ZLog3 0.999 0.175 0.175 1.842 1.106 0.990 0.873 0.492
ZLog4 1.005 0.237 0.235 2.257 1.143 0.986 0.834 0.389
ZLog5 1.015 0.302 0.297 2.767 1.182 0.983 0.797 0.307
ZLog6 1.029 0.372 0.362 3.391 1.222 0.980 0.762 0.242
ZLog7 1.046 0.448 0.429 4.157 1.264 0.976 0.728 0.191
ZLog8 1.067 0.532 0.499 5.095 1.307 0.973 0.695 0.151
ZLog9 1.092 0.625 0.573 6.246 1.351 0.970 0.605 0.119
ZLog10 1.122 0.730 0.651 7.656 1.397 0.966 0.635 0.094
ZLog11 1.156 0.849 0.735 9.384 1.445 0.963 0.607 0.074
ZLog12 1.196 0.986 0.824 11.502 1.494 0.960 0.580 0.059
ZLog13 1.242 1.142 0.920 14.099 1.545 0.956 0.554 0.046
ZLog14 1.294 1.324 1.023 17.281 1.597 0.953 0.530 0.037
ZLog15 1.354 1.536 1.135 21.182 1.651 0.950 0.506 0.029
ZLog16 1.421 1.783 1.255 25.964 1.708 0.947 0.484 0.023
ZLog17 1.497 2.074 1.385 31.825 1.766 0.943 0.462 0.018
ZLog18 1.583 2.416 1.526 39.009 1.826 0.940 0.442 0.014
ZLog19 1.681 2.820 1.678 47.815 1.888 0.937 0.422 0.011
ZLog20 1.792 3.299 1.841 58.609 1.952 0.934 0.403 0.009
ZLog21 1.917 3.867 2.018 71.839 2.018 0.931 0.385 0.007
ZLog22 2.059 4.543 2.207 88.056 2.087 0.927 0.368 0.006
ZLog23 2.220 5.348 2.410 107.934 2.158 0.924 0.352 0.004
ZLog24 2.402 6.309 2.626 132.299 2.231 0.921 0.336 0.003
ZLog25 2.611 7.458 2.857 162.165 2.307 0.918 0.321 0.005
ZLog26 2.848 8.832 3.101 198.772 2.386 0.915 0.307 0.002
ZLog27 3.119 10.497 3.360 243.642 2.467 0.912 0.293 0.002

TABLE 8. Summary statisticsfor back-transformed lognormal kriging estimates after equation (5).

Var Mean Sdv cv Max uQ Med LQ Min
ZLog1 1.000 0.092 0.092 1.245 1.060 0.998 0.938 0.772
ZLog2 1.009 0.186 0.185 1.549 1.123 0.997 0.880 0.596
ZLog3 1.027 0.286 0.278 1.928 1.190 0.995 0.825 0.460
ZLog4 1.054 0.394 0.374 2.400 1.261 0.993 0.774 0.355
ZLog5 1.090 0.515 0.473 2.987 1.337 0.992 0.726 0.274
ZLog6 1.136 0.654 0.576 3.718 1.417 0.990 0.681 0.211
ZLog7 1.195 0.816 0.683 4.628 1.502 0.989 0.639 0.163
ZLog8 1.266 1.007 0.795 5.760 1.591 0.987 0.600 0.126
ZLog9 1.351 1.234 0.913 7.170 1.687 0.985 0.562 0.097
ZLog10 1.453 1.506 1.036 8.924 1.787 0.984 0.528 0.075
ZLog11 1.575 1.835 1.165 11.107 1.894 0.982 0.495 0.058
ZLog12 1.720 2.234 1.299 13.825 2.007 0.980 0.464 0.045
ZLog13 1.891 2.719 1.438 17.208 2.128 0.979 0.435 0.034
ZLog14 2.093 3.312 1.582 21.418 2.255 0.977 0.408 0.027
ZLog15 2.332 4.036 1.731 26.658 2.390 0.976 0.383 0.021
ZLog16 2.615 4.922 1.883 33.181 2.532 0.974 0.359 0.016
ZlLog17 2.950 6.010 2.037 41.300 2.684 0.972 0.337 0.012
ZLog18 3.347 7.346 2.195 51.404 2.844 0.971 0.316 0.009
ZLog19 3.819 8.988 2.353 63.982 3.014 0.969 0.297 0.007
ZLog20 4.381 11.009 2.513 79.636 3.195 0.968 0.278 0.006
ZLog21 5.050 13.498 2.673 99.121 3.386 0.966 0.261 0.004
ZLog22 5.849 16.566 2.832 123.374 3.588 0.964 0.245 0.003
ZLog23 6.804 20.349 2.991 153.560 3.803 0.963 0.230 0.003
ZLog24 7.948 25.017 3.147 191.132 4.030 0.961 0.215 0.002
ZLog25 9.321 30.780 3.302 237.898 4.271 0.960 0.202 0.002
ZLog26 10.970 46.697 3.605 368.554 4.797 0.956 0.178 0.001
ZLog27 12.954 46.697 3.605 368.554 4.797 0.956 0.178 0.001
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TABLE 9. Summary statisticsfor E-type estimates from ordinary kriging approach after equation (5).

Var Mean Sdv CVv Max uQ Med LQ Min
ZLog1 0.999 0.054 0.055 1.217 1.034 0.999 0.959 0.809
ZLog2 1.006 0.110 0.109 1.486 1.074 1.004 0.927 0.655
ZLog3 1.022 0.168 0.165 1.819 1.119 1.011 0.903 0.534
ZLog4 1.046 0.231 0.221 2.232 1.174 1.025 0.884 0.438
ZLog5 1.080 0.302 0.279 2.742 1.236 1.042 0.869 0.362
ZLog6 1.123 0.382 0.340 3.373 1.306 1.066 0.863 0.303
ZLog7 1.178 0.474 0.402 4.154 1.386 1.096 0.859 0.256
ZLog8 1.246 0.583 0.468 5.120 1.479 1.129 0.862 0.220
ZLog9 1.328 0.711 0.536 6.314 1.579 1.169 0.870 0.192
ZLog10 1.426 0.865 0.607 7.790 1.698 1.213 0.885 0.170
ZLog11 1.542 1.050 0.681 9.615 1.828 1.264 0.905 0.149
ZLog12 1.681 1.274 0.758 11.872 1.985 1.322 0.925 0.132
ZLog13 1.846 1.545 0.837 14.663 2171 1.392 0.946 0.119
ZLog14 2.091 1.874 0.918 18.114 2.409 1.461 0.965 0.108
ZLog15 2.272 2.274 1.001 22.381 2.653 1.536 0.994 0.100
ZLog16 2.546 2.762 1.085 27.660 2.945 1.624 1.034 0.093
ZLog17 2.871 3.356 1.169 34.188 3.279 1.730 1.069 0.088
ZLog18 3.257 4.082 1.253 42.262 3.708 1.837 1.108 0.085
ZLog19 3.716 4.968 1.337 52.250 4137 1.977 1.155 0.083
ZLog20 4.263 6.050 1.419 64.606 4.624 2.128 1.198 0.082
ZLog21 4.915 7.374 1.500 79.891 5.181 2.277 1.253 0.082
ZLog22 5.693 8.993 1.580 98.803 5.954 2.440 1.321 0.077
ZLog23 6.625 10.975 1.657 122.202 6.830 2.623 1.388 0.070
ZLog24 7.741 13.402 1.731 151.155 7.839 2.825 1.453 0.063
ZLog25 9.079 16.374 1.803 186.983 8.977 3.069 1.524 0.056
ZLog26 10.688 20.017 1.873 231.321 10.269 3.295 1.603 0.051
ZLog27 12.623 24.482 1.940 286.194 11.921 3.564 1.687 0.046

1

(o]

123456 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27

FIGURE 9. Box plotsfor all samplescompared with back-
transformed lognormal kriging estimates after equation (4).
L egend: box = lower quartile, median and upper quartile of

sample statistics; star = mean; open circle = minimum;

full circle=maximum; black = sampleand red = estimates.

All valuesarerepresented in logarithmic scale.

123456 7 8 91011121314 15 16 17 18 19 20 21 22 23 24 25 26 27

FIGURE 10. Box plotsfor all samplescompared with
back-transformed lognormal kriging estimates after
equation (5). Legend: box = lower quartile, median

and upper quartile of sample statistics; star = mean;

opencircle=minimum; full circle= maximum;
black = sample and red = estimates. All values
arerepresented in logarithmic scale.
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FIGURE 11. Box plotsfor al samplescompared with E-
type estimates derived from indicator kriging conditional
distributions. Legend: box = lower quartile, median and
upper quartile of sample statistics; star = mean;
open circle=minimum; full circle= maximum,
black = sample and red = estimates. All values
arerepresented in logarithmic scale.

whereas equation (4) gives better correlationsfor data
sets from 13 to 27. RMS errors are very close to each
other and all methods give approximately the same
values. Mean errors are expected to be closeto zero. In
our case study, back-transformed estimates after
equation (4) gave the poorest results. Mean absolute
errors both show back-transforming approaches giving
errors close to each other, but E-type estimates from
the indicator kriging approach results in the largest
errors. In general, the indicator approach seems to
present poorer results when compared to lognormal
kriging.

Figure 13 shows both methods for back
transforming lognormal kriging estimates producing
very similar results because we are examining the mean
values that resulted from averaging over 2290 data.
Then, what is the difference between equations (4)
and (5) for back-transforming lognormal kriging
estimates? Comparing scattergrams presented in Figure
14 we verify that both correlations to the exhaustive
data are similar to each other, but the slopes of the
regression lines are different, being that Figure 14A
shows a slope greater than one and in Figure 14B the
dopeislessthan one. Figure 15illustratesascattergram
of actual valuesversus E-type estimates from indicator
kriging in which theregression line hasaslope greater
than one.

The slope of the regression line is calculated as
(Yamamoto, 2005):

Pxy *Sy

X

Slope =

where p, . is the correlation coefficient; S, is the

standard deviationfor variable X and S, isthe standard
deviationfor variable.

Theslopesof theregression lineson scattergrams
were calculated for all data and illustrated in Figure
16. Looking at this figure we can verify certain
differences. As we can see just back-transformed
estimates after equation (5) present slopes closer to
one, while for the other approaches slopes are aways
greater than one, showing that these two last
approaches present some smoothing effect. The only
method which removes this effect is the back-
transformation after equation (5). It is important to
observethat the smoothing removal doesnot mean loss
of local accuracy and that the corrected estimates
reproduce the sample histogram (Figure 12).

Thisway it ispossibleto examinethe uncertainties
associated with both lognormal kriging and indicator
kriging. As we know, lognormal data present the
proportional effect, which means that the variance
increases when data values increase. Finney (1941)
realized that anumber of biological and other populations
show the standard error of an individual observation
approximately proportional to the magnitude of the
observations. According to Manchuk et al. (2009) the
proportional effect is becoming important as long as
geostatistical proceduresinvolve complex datasetsand
geometrically complicated models presenting
unstructured grids and map elements of variable size.

On the other hand, Rocha & Yamamoto (2000)
showed that for distributions presenting negative
skewness the variance decreases when data values
increase.

In this case study we are handling lognormal data,
thusit isinteresting to examine the rel ationship between
estimates and uncertainties. For lognormal kriging we
have considered the relationship between back-
transformed interpol ation standard deviations (equation
6) and back-transformed estimates after equation (4).
For the indicator kriging approach we used the
conditional standard deviationsversusE-Typeestimates.
For these pairsof variables correlation coefficientswere
computed as displayed in Figure 17. Aswe can seein
this figure, correlation coefficients increase as the
coefficient of variationincreases. Thelognormal approach
presents correlation coefficients a little bit greater than
those shown by theindicator kriging approach. Datasets
presenting coefficients of variation greater than 1.254
can be considered lognormal distributions. Examining
Table 5 it is possible to verify that variable ZLogl1l
presentsacoefficient of variation equal to 1.220, which
isvery closeto. 1.254. In Figure 17 we can seethat for
coefficients of variation greater than 1.220 correlation
coefficientsdo not increase asmuch, reaching asill after
data set number 18 approximately.
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FIGURE 12. Comparing estimated cumulative frequency distributionswith sampledistributions.
Legend: red cross = sample; green circle = E-type estimatesfrom indicator kriging;
blue square = back-transformed lognormal kriging estimates after equation (5).
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FIGURE 14. Scattergramsof actual valuesversuslognormal kriging estimates. (A) back-transformed
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FIGURE 16. Slopesof regression lines cal culated on scattergrams.
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FIGURE 17. Correlation coefficients showing the proportional effect of lognormal data.
Legend: lognormal kriging approach (red); indicator kriging approach (blue).

CONCLUSIONS

In this paper two approaches for estimating
lognormal data were examined. A systematic and
intensive study wascarried out to verify the performance
of the mentioned methods. The lognormal kriging
approach is till the best approach to lognormal data.
Equation (5) providesback-transformedlognorma kriging
estimates that are closer to sample data. Actualy, the
closer estimates are to the sample data, the better isthe
inference about the population. Since we do not know
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