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ABSTRACT – Lognormal data are very difficult to handle because of its high variability due to the occurrence of a few high values. In
geostatistics the solution calls for a data transform, such as the logarithm transform and the indicator transform. Both approaches have
been used for estimating lognormal data. Lognormal kriging works on kriging the transformed data and then estimates are back-transformed
into the original scale of data. Indicator kriging builds a conditional cumulative distribution function at every unsampled location and
estimates are based on the conditional mean or E-type estimate. Usually back-transformed lognormal kriging estimates are mean biased
and conditional means from indicator kriging are unbiased. This paper compares both approaches for 27 data sets presenting distributions
with increasing positive skewness. Actually 27 exhaustive data sets have been computer generated from which stratified random samples
with 90 points were drawn. Estimates were first examined for local accuracy and the associated uncertainties were checked for the
proportional effect. Results show that lognormal kriging is still the best approach for lognormal data if we use an algorithm that takes into
consideration correcting the smoothing effect before back-transformation.
Keywords: lognormal distribution, lognormal kriging, indicator kriging, proportional effect.

RESUMO – J.K. Yamamoto & R. de A. Furuie - Um estudo sobre estimativa de dados lognormais.  Dados lognormais são muito difíceis
de se trabalhar devido à sua grande variabilidade por causa da ocorrência de uns poucos valores altos. Em geoestatística a solução passa
pela transformação dos dados, como a transformada logarítmica e a transformada indicadora. Ambas as aproximações têm sido utilizadas
para estimativa de dados lognormais. A krigagem lognormal trabalha sobre os dados transformados e após isto as estimativas são
transformadas de volta para a escala original dos dados. A krigagem da variável indicadora constrói uma função de distribuição acumulada
condicional em cada ponto não amostrado e as estimativas são baseadas na média condicional ou estimativa do tipo E. Geralmente,
estimativas por krigagem lognormal transformadas de volta para a escala original apresentam vieses em relação à média amostral e as
médias condicionais derivadas da krigagem da indicadora não são enviesadas. Esse trabalho compara ambas as aproximações para 27
conjuntos de dados apresentando distribuições com assimetria positiva crescente. Na verdade, 27 dados completos foram gerados em
computador dos quais amostras aleatórias estratificadas com 90 pontos foram extraídas. As estimativas foram examinadas inicialmente em
relação à precisão local e as incertezas foram verificadas para o efeito proporcional. Os resultados mostram que a krigagem lognormal é
ainda a melhor aproximação para dados lognormais se usarmos a equação que leva em consideração a correção do efeito de suavização antes
da transformada reversa.
Palavras-chave: distribuição lognormal, krigagem lognormal, krigagem da indicadora, efeito proporcional.

INTRODUCTION

Lognormal distributions are very common in
mineral deposits of rare metals, diamonds, uranium and
other minerals. This distribution is characterized by a
positive skewness in such a way that the mean is
greater than the median of the distribution. Data
displaying lognormal distribution present a great number
of low values and a few high values. These high values
increase the variance of the data set and make the

task of semivariogram calculation and ordinary kriging
estimation difficult. Actually, experimental
semivariograms are very sensitive to these high values
and consequently are useless (Journel, 1983). Journel
(1983) proposed two solutions for this problem: trim
off high values or transform the original data using
functions such as square roots, natural logarithm or
normal score transform. Data transformation is a much
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better solution than trimming off high valued data. The
objective of data transform is to obtain a symmetrical
distribution. Logarithm transform is a good option used
not only in geostatistics but also in other fields.
Transformed data are then used for computing and
modeling the semivariogram and for ordinary kriging
estimation. After that estimates in the transformed
domain are back-transformed into the original scale
of measurement. For ordinary lognormal kriging it
was proved that back-transformation after correcting
the smoothing effect of ordinary kriging estimates
is the best alternative to get unbiased results
(Yamamoto, 2007).

Another approach commonly used for lognormal
data was proposed by Journel (1983), based on the
indicator transform. According to this approach, instead

of estimating at every unsampled location, we build a
conditional cumulative distribution function (ccdf).
From this conditional cumulative distribution function
some statistics can be derived that are the conditional
mean or E-type estimate and the conditional variance
as well. It is important to note that the conditional
variance derived from the indicator approach is much
better than the traditional kriging variance, which is
considered as just a measure of the spatial configuration
of neighboring data (Journel & Rossi, 1989).

The results for both approaches can be compared
with each other in terms of unbiasedness, correlation
and errors of estimates versus real data. This paper
presents the results of a comparison between ordinary
lognormal kriging and indicator kriging for estimation
of lognormal data.

ORDINARY  LOGNORMAL  KRIGING

Lognormal kriging was proposed by Journel
(1980), who also proposed a back-transform equation
based on the kriging variance following the traditional
approach for computing the mean of lognormal data.
Original data are transformed into logarithms as follows:

                                                     (1)

By definition if the random variable Z(x) follows
a lognormal distribution then Y(x) will present a normal
distribution. Sometimes it is necessary to use another
logarithm transform in order to guarantee that 50% of
transformed data are less than zero and the other 50%
are greater than zero. It can be done by dividing Z(x)
by its median and then taking its logarithm:

                                                     (2)

This transform does not change the shape of the
resulting frequency distribution but only guarantees the
symmetry of transformed data relative to zero.

In geostatistical estimation or simulation the
semivariogram model is the point of departure. The
experimental semivariogram is computed by using the
transformed values. Estimation at unsampled locations
can be made using ordinary kriging:
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Estimates at the unsampled locations are in the
logarithmic domain and so they need to be back-
transformed into the original scale of measurement.
The traditional formula for back-transforming lognormal
kriging estimates is based on (Journel, 1980):

( ) ( )( ) MedianxYxZ OKoOKoOLK *2/exp 2** µσ −+=   (4)

However, this is where the main problem in
lognormal kriging appears since back-transformed
estimates are usually biased when compared with the
original data (Journel & Huijbregts, 1978). Bias of back-
transformed estimates is reported in several papers (e.g.
Saito & Goovaerts, 2000) because expression (4) is
very sensitive to the semivariogram model.

A new approach was proposed by Yamamoto
(2007) in which the back-transform is performed after
correcting ordinary kriging estimates (equation 3) for
the smoothing effect (Yamamoto, 2005). Actually, the
ordinary kriging estimator (equation 3) is none other than
a weighted average formula and therefore its results
will present some smoothing. As a consequence, low
values are overestimated and high values underestimated.
Comparing the histogram of ordinary kriging estimates
with the histogram of transformed data it is possible to
realize that the lower and upper tails are lost in the
estimation process. Therefore, if we try to back-transform
a smoothed histogram we will not get the original data
histogram. This is the main idea behind the approach
proposed by Yamamoto (2007), details of this approach
can be found in the referred paper. Thus, according to
Yamamoto (2007), ordinary kriging estimates can be
back-transformed by using:

( ) ( ) ( )( ) MedianxYxYxZ oNSoOKoOLK o
*exp **** +=    (5)

where ( )oNS xY
o

*  is the smoothing error that is negative
when overestimation occurs and positive otherwise.

This way estimates can then be back-transformed
into the original scale of measurement. But uncertainties



São Paulo, UNESP, Geociências, v. 29,  n. 1, p. 5-19, 2010 7

remain in the logarithmic scale and so they cannot be
used. A new approach for back-transforming
uncertainties was proposed by Yamamoto (2008).
According to this proposal, the interpolation standard
deviation can be back-transformed as:

                                                            (6)

INDICATOR  KRIGING

where ( )oOK xY *  is the lognormal kriging estimate at an
unsampled location x

o
 and S

o
 is the interpolation

standard deviation (Yamamoto, 2000) in the logarithmic
scale.

It is important to note that we cannot simply obtain
the interpolation standard deviation in the original scale
of measurement by applying ( ) MedianSo *exp .
Actually we have to add to it the term  which brings
the uncertainty into the range of logarithmic values.

The indicator approach is based on the indicator
transform of the original data as follows (Journel, 1983):
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where z
c
 is the cutoff grade or a reference value.

The mean of an indicator variable is the probability
that the random variable is less than the cutoff grade:

( )[ ] ( )( )cc zxZPzxIEm <== ;                       (8)

The variance of an indicator variable can be
written as:
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Noting that ( )[ ] ( )[ ]cc zxIEzxIE ;;2 =  the
variance can also be expressed in terms of probabilities:

( )[ ] ( )( ) ( )( )( )ccc zxZPzxZPzxIVar =<−<= 1;

( )( ) ( )( )cc zxZPzxZP ≥<=                            (10)

With this new variable the indicator semivariogram
is computed and modeled for the indicator kriging
approach. The indicator kriging estimator is (Journel,
1983):

                                                                     (11)

This means we are estimating the probability that
the random variable at an unsampled location x

o
 is less

than the cutoff grade z
c
. The uncertainty associated

with the indicator kriging estimate after (11) is as
follows:

                                                                     (12)

Actually this is the interpolation variance according
to Yamamoto (2000). Developing this expression
we get:

Note that this is similar to expression (9). Thus,
the interpolation variance can be interpreted as a product
of probabilities as shown in (10):

                                                             (13)

The same interpretation cannot be done with the
kriging variance because it depends on the
semivariogram model.

It is important to mention we are estimating the
probability for just a cutoff grade. However, if we are
interested in building a conditional cumulative
distribution function we need to estimate the probability
for several cutoff grades. Therefore, we have to split
the original data distribution into a number of cutoff
grades in such a way that we can build a conditional
cumulative distribution function. Just for illustration
purposes Table 1 shows some the first and the last
percentiles for a number of cutoff grades.

TABLE 1.  Sampled intervals of the distribution
after splitting into a number of cutoff grades.
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As we can see, even when dividing the original
distribution into 100 intervals (or 99 cutoff grades), only
98% of the data are considered for building the
conditional cumulative distribution function.

If we choose 19 cutoff grades, it means we have
to compute and model 19 indicator semivariograms.
Besides, indicator semivariograms computed for cutoff
grades representing the tails of the distribution will
present great statistical fluctuations. For example, if
the first percentile is 5% we will have only 5% of data
equal to one and 95% equal to zero. Therefore, only
5% of the data will form pairs (the squared difference
must be greater than zero) that can be considered in
the semivariogram computation. The same happens in
the upper tail, in which 95% of data will be equal to
one and 5% equal to zero. Once again, only 5% of the
data will form pairs for semivariogram calculation.
Other than that, often we have problems for building
the conditional cumulative distribution function mainly
when order relation occurs (Hohn, 1999).

Thus, a practical solution for this problem was
proposed by Deutsch & Journel (1992) which is based
on the median indicator semivariogram. This is the best
semivariogram because 50% of data are equal to one
and the other 50% equal to zero, meaning all data will
form pairs for semivariogram computation. The median
indicator semivariogram is used for all other cutoff
grades and order relation will never occur. This
approach will be considered in this paper. For illustration
purposes let us consider a conditional cumulative
distribution function presented in Figure 1.

From the conditional cumulative distribution
function we can derive two statistics: the conditional
mean or E-type estimate (Deutsch & Journel, 1992)
and the conditional variance:

                                                                     (14)

                                                                     (15)

The great advantage of this method is that the
conditional mean and the conditional variance derived
from the conditional cumulative distribution function are
in the original scale of measurement.

FIGURE 1.  Illustrating a conditional cumulative
distribution function built from 9 deciles.

MATERIALS  AND  METHODS

In this section we want to show how synthetic
data can be computer generated. What we need is the
spatial distribution of a random variable. For instance
we can start from the well known public domain data
set named true.dat (Deutsch & Journel, 1992). This
data set presents two variables named: primary and
secondary. Since the primary variable is a simulated
variable, it was chosen to work with the secondary
variable. Then this secondary variable from true.dat
was transformed into a normal distribution N(0,1) using
the procedure described in Deutsch & Journel (1992).
Figure 2 shows the original secondary variable and the
normal score transformed new variable. Since the
original data represent a spatial phenomenon, we can
consider them as an exhaustive set of data or a known
population.

We can check parameters for both populations as
given in Table 2.

Population parameters (Table 2) confirm a
Gaussian distribution after the normal score transform

of the secondary variable from true.dat (Deutsch &
Journel, 1992).

From this normal score transformed variable we
can derive a lognormal distribution by raising e
(2.71828) to a power equal to the normal score:

                                                                   (16)

By definition we have an exact lognormal
distribution because if we take the logarithm of Z

Log

we have Z
Gauss

, which presents a normal distribution.
Figure 3 illustrates a typical lognormal distribution.

Population parameters for the new random
variable Z

Log
, which presents a typical lognormal

distribution, are presented in Table 3.
In Table 3 we can observe that a coefficient of

variation equal to 1.254 means a typical lognormal
distribution.

If we multiply the random variable Z
Gauss

 by a
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constant K (K > 1) in equation (16) we will obtain other
lognormal distributions, but if the constant K is less
than one, other positively skewed distributions with
coefficients of variation less than 1.254 are generated.

                                                         (17)

In equation (17) we multiply K times 0.1 in such a
way we can use K as an integer constant. Starting
from K equal to 1 to K equal to 27 we will have 27
synthetic exhaustive data sets. Just for illustration
purposes we show only population parameters (Table
4) and image maps for K=1 and for K=27 (Figure 4).

In Figure 4 (B) we cannot see anything but two
spots showing higher values. The color scale is divided
into arithmetic scale in such a way that practically all
of the area is painted red.

Now we have 27 exhaustive data sets representing
27 different spatial phenomena. From these exhaustive
data sets we have drawn a sample based on the
stratified random sampling technique. Moreover, all
samples have the same locations as shown in Figure 5.

FIGURE 2.  Image map of the secondary variable (A) and of the normal score transformed variable (B).

TABLE 2.  Population parameters for the secondary
variable and after normal score transform.

Summary statistics for all 27 samples are
presented in Table 5.

Regarding semivariogram models we have to
compute experimental semivariograms for all logarithm
transformed data and only one semivariogram for the
indicator variable. Semivariogram models for logarithm
transformed data look like the semivariogram model
shown in Figure 6, with a range equal to 12 and sills
scaled according to the constant K. Table 6 presents
sills for all semivariogram models for logarithm
transform data.

The semivariogram model for the indicator variable
(Figure 7) is the same for all samples because all
samples have the same location and data points were
calculated using equation (17).

This paper intends to compare both approaches
in terms of local precision and associated uncertainties.
Both lognormal kriging and indicator kriging were run,
by which we wanted to estimate a regular grid of 50
by 50 nodes that is exactly equal to the exhaustive grids.
Instead of 2500 nodes, we estimate 2290 nodes located
within the convex hull (Figure 8).
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TABLE 4.  Population parameters for K = 1 and for K = 27.

FIGURE 3.  Image of a typical lognormal distribution.

TABLE 3.  Population parameters for the new random
variable presenting lognormal distribution.

FIGURE 4.  Image maps for exhaustive data sets generated after expression (16) with K=1 (A) and with K=27 (B).

FIGURE 5.  Location map for samples drawn from
exhaustive data sets (sample size = 90).
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TABLE 5.  Summary statistics for samples drawn from exhaustive data sets
(all samples are composed of 90 data points).

FIGURE 6.  Semivariogram model computed for K=10
(lognormal data) after logarithm transform.

TABLE 6.  Sill values according to the constant K.
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FIGURE 7.  Semivariogram model
for the median indicator variable. FIGURE 8.  Regular grid within the convex hull,

calculated after Yamamoto (1997).

RESULTS  AND  DISCUSSION

First of all the results for lognormal kriging
estimates are shown. Actually, back-transformed
estimates after expressions (4) and (5) are examined.
Tables 7 and 8 present summary statistics for back-
transformed lognormal kriging estimates.

Next, the results for indicator kriging that is the
conditional mean (E-type estimate) calculated as
equation (14), are shown. Summary statistics for E-
type estimates are shown in Table 9.

Thus we want to know how different methods
work when compared to the samples. Actually, the
samples are taken as a representation of the population
that is the object of study and therefore the closer the
estimates are to the sample data the best inference we
can do about the population. Figures 9, 10 and 11 show
box plots for back-transformed lognormal kriging
estimates after equation (4), after equation (5) and E-
type estimates from conditional distributions built from
indicator kriging approach, respectively.

Comparing equations (4) and (5) it is possible to
verify that Journel’s approach (Journel, 1980) produces
estimates that are mean biased as reported in literature
such as (Journel & Huijbregts, 1978). However, the
median of back-transformed estimates are not biased.
Moreover, these estimates do not reproduce the full
variability of data sets. The approach after Yamamoto
(2007) presents the best results, reproducing all basic
statistics as close as possible to the sample data.

Examining Figure 11 it is possible to assert that E-
type estimates present means very close to the sample
means. However, medians are strongly biased because
of the loss of information on the lower tail (see minimum

values). The upper tails of distributions are reasonably
well reproduced by the indicator approach.

We can compare the different approaches by
comparing their cumulative frequency distributions.
Actually, just the back-transformed lognormal kriging
estimates after equation (5) and E-type estimates
derived from the indicator kriging approach are
compared to sample data because of limitations in the
computer program used for three distributions. Instead
of showing all 27 samples we present six samples that
illustrate the performance of different approaches for
estimating lognormal data (Figure 12).

Figure 12 just reconfirms what was seen in
previous figures, which is that the best approach is
provided by the back-transformed estimates after
equation (5). Although E-type estimates are not mean
biased, distributions get further from the sample
distribution as the coefficient of variation increases.
Therefore, lognormal kriging seems to be the best
approach for lognormal data. However, it is clear that
this approach presents best results after correcting the
smoothing effect of ordinary kriging estimates by the
use of equation (5).

Since we departed from exhaustive data sets we
know the real value at every estimated location. Thus,
we can compare estimates in terms of local precision
by computing correlation coefficients, RMS errors,
mean errors and mean absolute errors (Figure 13). In
terms of correlation coefficients the indicator approach
shows the lower values and between the two
approaches for back-transforming estimates equation
(5) provides better correlations for data sets 1 to 12
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TABLE 7.  Summary statistics for back-transformed lognormal kriging estimates after equation (4).

TABLE 8.  Summary statistics for back-transformed lognormal kriging estimates after equation (5).
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TABLE 9.  Summary statistics for E-type estimates from ordinary kriging approach after equation (5).

FIGURE 9.  Box plots for all samples compared with back-
transformed lognormal kriging estimates after equation (4).
Legend: box = lower quartile, median and upper quartile of

sample statistics; star = mean; open circle = minimum;
full circle = maximum; black = sample and red = estimates.

All values are represented in logarithmic scale.

FIGURE 10.  Box plots for all samples compared with
back-transformed lognormal kriging estimates after
equation (5). Legend: box = lower quartile, median

and upper quartile of sample statistics; star = mean;
open circle = minimum; full circle = maximum;
black = sample and red = estimates. All values

are represented in logarithmic scale.
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whereas equation (4) gives better correlations for data
sets from 13 to 27. RMS errors are very close to each
other and all methods give approximately the same
values. Mean errors are expected to be close to zero. In
our case study, back-transformed estimates after
equation (4) gave the poorest results. Mean absolute
errors both show back-transforming approaches giving
errors close to each other, but E-type estimates from
the indicator kriging approach results in the largest
errors. In general, the indicator approach seems to
present poorer results when compared to lognormal
kriging.

Figure 13 shows both methods for back
transforming lognormal kriging estimates producing
very similar results because we are examining the mean
values that resulted from averaging over 2290 data.
Then, what is the difference between equations (4)
and (5) for back-transforming lognormal kriging
estimates? Comparing scattergrams presented in Figure
14 we verify that both correlations to the exhaustive
data are similar to each other, but the slopes of the
regression lines are different, being that Figure 14A
shows a slope greater than one and in Figure 14B the
slope is less than one. Figure 15 illustrates a scattergram
of actual values versus E-type estimates from indicator
kriging in which the regression line has a slope greater
than one.

The slope of the regression line is calculated as
(Yamamoto, 2005):

where ρ
X,Y

  is the correlation coefficient; S
X
 is the

standard deviation for variable X and S
Y
 is the standard

deviation for variable Y.

The slopes of the regression lines on scattergrams
were calculated for all data and illustrated in Figure
16. Looking at this figure we can verify certain
differences. As we can see just back-transformed
estimates after equation (5) present slopes closer to
one, while for the other approaches slopes are always
greater than one, showing that these two last
approaches present some smoothing effect. The only
method which removes this effect is the back-
transformation after equation (5). It is important to
observe that the smoothing removal does not mean loss
of local accuracy and that the corrected estimates
reproduce the sample histogram (Figure 12).

This way it is possible to examine the uncertainties
associated with both lognormal kriging and indicator
kriging. As we know, lognormal data present the
proportional effect, which means that the variance
increases when data values increase. Finney (1941)
realized that a number of biological and other populations
show the standard error of an individual observation
approximately proportional to the magnitude of the
observations. According to Manchuk et al. (2009) the
proportional effect is becoming important as long as
geostatistical procedures involve complex data sets and
geometrically complicated models presenting
unstructured grids and map elements of variable size.

On the other hand, Rocha & Yamamoto (2000)
showed that for distributions presenting negative
skewness the variance decreases when data values
increase.

In this case study we are handling lognormal data,
thus it is interesting to examine the relationship between
estimates and uncertainties. For lognormal kriging we
have considered the relationship between back-
transformed interpolation standard deviations (equation
6) and back-transformed estimates after equation (4).
For the indicator kriging approach we used the
conditional standard deviations versus E-Type estimates.
For these pairs of variables correlation coefficients were
computed as displayed in Figure 17. As we can see in
this figure, correlation coefficients increase as the
coefficient of variation increases. The lognormal approach
presents correlation coefficients a little bit greater than
those shown by the indicator kriging approach. Data sets
presenting coefficients of variation greater than 1.254
can be considered lognormal distributions. Examining
Table 5 it is possible to verify that variable ZLog11
presents a coefficient of variation equal to 1.220, which
is very close to. 1.254. In Figure 17 we can see that for
coefficients of variation greater than 1.220 correlation
coefficients do not increase as much, reaching a sill after
data set number 18 approximately.

FIGURE 11.  Box plots for all samples compared with E-
type estimates derived from indicator kriging conditional
distributions. Legend: box = lower quartile, median and

upper quartile of sample statistics; star = mean;
open circle = minimum; full circle = maximum;
black = sample and red = estimates. All values

are represented in logarithmic scale.
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FIGURE 12.  Comparing estimated cumulative frequency distributions with sample distributions.
Legend: red cross = sample; green circle = E-type estimates from indicator kriging;

blue square = back-transformed lognormal kriging estimates after equation (5).

FIGURE 13.  Statistics comparing real and estimated values:
correlation coefficient (A); RMS error (B); Mean error (C); Mean absolute error (D).
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FIGURE 14.  Scattergrams of actual values versus lognormal kriging estimates: (A) back-transformed
estimates after equation (4); (B) back-transformed estimates after equation (5).

FIGURE 15.  Scattergrams of actual values versus E-type estimates from indicator kriging.

FIGURE 16.  Slopes of regression lines calculated on scattergrams.
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FIGURE 17.  Correlation coefficients showing the proportional effect of lognormal data.
Legend: lognormal kriging approach (red); indicator kriging approach (blue).

CONCLUSIONS

In this paper two approaches for estimating
lognormal data were examined. A systematic and
intensive study was carried out to verify the performance
of the mentioned methods. The lognormal kriging
approach is still the best approach to lognormal data.
Equation (5) provides back-transformed lognormal kriging
estimates that are closer to sample data. Actually, the
closer estimates are to the sample data, the better is the
inference about the population. Since we do not know

anything about the population that the sample comes from,
the best solution is to retain estimates of the spatial
phenomenon as close as possible to sample statistics. In
this sense, equation (5) provided estimated distributions
that are not mean or median biased. Although indicator
kriging resulted in estimates with unbiased means, the
other basic statistics are very poor when compared with
sample statistics. Both approaches represent very well
the proportional effect for lognormal distributions.
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