NOISY BAND SELECTION BASED ON THE INTEGRATION OF THE STACKED-AUTOENCODER AND CONVOLUTIONAL NEURAL NETWORK APPROACHES FOR HYPERSPECTRAL DATA
Seleção de bandas ruidosas baseada na integração de Stacked-AutoEncoder e redes neurais convulacionais para dados hiperespectrais
DOI:
https://doi.org/10.5016/geociencias.v42i2.16976Resumo
RESUMO - A presença de ruído em imagens hiperespectrais causa degradação e dificulta a eficiência no processamento para a classificação da cobertura terrestre. Nesse sentido, a remoção do ruído ou a detecção automática de bandas ruidosas em imagens hiperespectrais torna-se um desafio para pesquisas na área de sensoriamento remoto. Para solucionar esse problema, um modelo integrado (SAE-1DCNN) é apresentado nesse estudo, baseado nos algoritmos de Deep Learning conhecidos como: Stacked-Autoencoders (SAE) e Redes Neurais Convolucionais (CNN) para a seleção e exclusão de bandas ruidosas. O modelo proposto emprega as camadas convolucionais para melhorar o desempenho dos Autoencoders focados na discriminação dos dados de treinamento por meio da análise da assinatura hiperespectral do pixel. Assim, no modelo SAE-1DCNN, a informação pode ser comprimida, e depois a informação redundante pode ser detectada e extraída tirando partido da eficiência da arquitetura profunda baseada nas camadas convolucionais e de agrupamento. Os dados hiperespectrais do sensor AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) foram utilizados para avaliar o desempenho do método automático proposto, com base na seleção de atributos. Os resultados mostraram eficácia na identificação automática de bandas ruidosas, sugerindo que a metodologia proposta foi considerada promissora e pode ser uma alternativa para identificar bandas ruidosas no âmbito de pré-processamento de dados hiperespectrais.
ABSTRACT - The presence of noise on hyperspectral images causes degradation and hinders efficiency of processing for land cover classification. In this sense, removing noise or detecting noisy bands automatically on hyperspectral images becomes a challenge for research in remote sensing. To cope this problem, an integrated model (SAE-1DCNN) is presented in this study, based on Stacked-Autoencoders (SAE) and Convolutional Neural Networks (CNN) algorithms for the selection and exclusion of noisy bands. The proposed model employs convolutional layers to improve the performance of autoencoders focused on discriminating the training data by analyzing the hyperspectral signature of the pixel. Thus, in the SAE-1DCNN model, information can be compressed, and then redundant information can be detected and extracted by taking advantage of the efficiency of the deep architecture based on the convolutional and pooling layers. Hyperspectral data from the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) sensor were used to evaluate the performance of the proposed automatic method based on feature selection. The results showed effectiveness to identify noisy bands automatically, suggesting that the proposed methodology was found to be promising and can be an alternative to identify noisy bands within the scope of hyperspectral data pre-processing.