MACHINE LEARNING ALGORITHMS APPLIED TO THE PREDICTION OF SLOPE FAILURES IN EARTH DAMS TRIGGERED BY RAINFALL

Algoritmos de aprendizado de máquina aplicados à previsão de falhas em taludes de barragens de terra provocadas por chuvas

Authors

DOI:

https://doi.org/10.5016/geociencias.v44i3.18846

Abstract

The stability of slopes in earth dams is a matter of global significance. Precipitation is a crucial factor in this analysis, as rainfall is a major trigger for landslides. Recent advancements in computational system that integrate numerical models with machine learning algorithms offer a robust approach for accurate predictions. This investigation employs seven widely used algorithms for predicting slope stability: artificial neural networks, support vector machines, decision trees, random forests, k-nearest neighbors, logistic regression, and Naive Bayes. This research utilizes a dataset with 5637 cases of earth dams generated through coupled numerical methods, which consider transient seepage and the impact of precipitation on slope stability. The goal is to develop prediction models with high accuracy. The results indicate that the best overall response case is k-nearest neighbors with an accuracy of 0.983 and an error of 0.017; followed by artificial neural networks with an accuracy of 0.966 and an error of 0.034. The most unfavorable results were obtained for Naive Bayes with accuracy of 0.852 and an error of 0.148; followed by support vector machines with an accuracy of 0.863 and an error of 0.137. In addition, three real-worlds slopes with similar characteristics to those proposed in the dataset were selected to validate the individual results obtained with each of the seven algorithms. From this analysis it was detected that artificial neural network, support vector machines, and random forests were the only ones that accurately predicted the expected response in the validation.

Author Biographies

Isaida Flores Berenguer, Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Departamento de Estructuras.

Calle # 50 entre Avenida 25 y Avenida 27.

Playa, La Habana Cuba.

Adriana Ortega Rubio, Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE)

Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Faculdad de Ingeniería Civil Departamento de Estructuras.

Calle # 50 entre Avenida 25 y Avenida 27.

Playa, La Habana Cuba.

Alejandro Rosete, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Facultad de Ingeniería Informática

Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Faculdad de Ingeniería Civil 

Calle # 50 entre Avenida 25 y Avenida 27.

Playa, La Habana. Cuba.

Yoermes González Haramboure, Instituto Nacional de Recursos Hidráulicos / Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Instituto Nacional de Recursos Hidráulicos

Departamento de Estructuras.

Calle # 50 entre Avenida 25 y Avenida 27.

Playa, La Habana Cuba.

Jenny García Tristá, Universidad Tecnológica de La Habana José Antonio Echeverría (CUJAE). Facultad de Ingeniería Civil

Universidad Tecnológica de La Habana “José Antonio Echeverría” (CUJAE).

Faculdad de Ingeniería Civil Departamento de Estructuras.

Calle # 50 entre Avenida 25 y Avenida 27. Playa,

La Habana Cuba.

Downloads

Published

2025-10-02

Issue

Section

Artigos